
Working With
Others

Beta Draft

Michael Heron
(drakkos@discworld.atuin.net)

Working With Others, First Edition

Table of Contents
Mojo The Monkey Says...5
Playing Nicely With Others..6

Introduction ...6
Whole New Skills ...6
Standard Standards ...7
Professionalism ...8
Conclusion ..9

Code Layout...10
Introduction ...10
Code Formatting ...10
Conclusion ..16

Collaboration..17
Introduction ...17
The Social Context of Collaboration ..17
Development in Volunteer Environments...19
What Are The Benefits of Collaboration? ..20
Collaboration Tools on Discworld ..20
A Suggested Collaboration Process ..21
Conclusion ..22

Social Capital..23
Introduction ...23
Creator Politics ...23
The Ten Commandments Of Egoless Programming ..24
Trust and Common Ground ..27
The Trust Triad ...29
Conclusion ..30

The Dark Art of Refactoring..32
Introduction ...32
Refactoring ..32
Good Code ..32
Impact of Change ..33
The Rules ..34
Breaking The Rules ..36
Refactoring ..37
Some Common Refactoring Tasks ...38
Conclusion ..39

Coding Etiquitte..40
Introduction ...40
Before You Write Any Code ..40
When You Have Written Code ...45
Conclusion ..46

Source Control..47
Introduction ...47
Source Control In The Abstract ..47
The Discworld RCS System ...48
Problems ...53

Michael Heron Page 2

Working With Others, First Edition

Conclusion ..54
Documentation...55

Introduction ...55
Commenting ..55
Commenting Good Practice ..56
Autodoc ...57
The Autodoc Process ..62
Other Help-Files ...62
Why Document? ...64
Conclusion ..65

Domain Integration...66
Introduction ...66
Multiple Developers – the Traditional Approach ...66
Examples of this on Discworld ...68
Continuous Integration ...68
A Framework for Area Integration ...70
Conclusion ..71

Group Dynamics...72
Introduction ...72
What is a Domain? ..72
When Is A Group Not A Group? ..74
Group Roles ..76
Group-think ...78
Conclusion ..79

Project Management...81
Introduction ...81
Project Management 101 ..81
Frameworks ..82
Communication and Team Roles ..83
Subdivision of Effort and Ownership ...85
The Discworld Project Tracker ...86
Conclusion ..90

Maintenance...91
Introduction ...91
Maintenance In The Software Development Process ...91
Domain Maintenance ..93
Where Do Bugs Come From? ...94
Bug Triage ..95
The Error Handler ...96
Conclusion ..99

The Experience Divide...100
Introduction ...100
Professional and Amateur Programmers ..100
Deep Smarts ..102
The Tension ..103
Strategies for Success ...105
Conclusion ..106

Wrapping Up..107
Introduction ...107

Michael Heron Page 3

Working With Others, First Edition

Collegiality ..107
Further Reading ..108
Conclusion ..108

Michael Heron Page 4

Working With Others, First Edition

Mojo The Monkey Says...
All rights, including copyright, in the
content of these documents are owned
or controlled by the indicated author.

You are permitted to use this material
for your own personal, non-commercial
use. This material may be used,
adapted, modified, and distributed by
the administration of Discworld MUD
(http://discworld.atuin.net – try the
veal) as necessary.

You are not otherwise permitted to
copy, distribute, download, transmit,
show in public, adapt or change in any
way the content of these web pages for
any purpose whatsoever without the
prior written permission of the
indicated author(s).

If you wish to use this material for non-personal use, please contact the authors of the texts for
permission.

If you find these texts useful and want to give less niche programming languages a try, come check
out http://www.monkeys-at-keyboards.com for more free instructional material.

My apologies for the unfriendly legal boilerplate, but I have had people attempt to steal ownership
of my material before.

Please direct any comments about this material to drakkos@discworld.atuin.net.

That's mojo at the top right. He's very clever. He has a B.A in Nanas!

Michael Heron Page 5

mailto:drakkos@discworld.atuin.net
http://www.monkeys-at-keyboards.com/
http://discworld.atuin.net/

Working With Others, First Edition

Playing Nicely With Others

Introduction
I know it sounds horribly touchy-feely – we're game developers, not teenagers
on a camping trip. However, the most vital skill for life that you'll pick up from
being a Discworld creator is how to work with other people. Absolutely
everything we do is a collaborative exercise.
In terms of your immediate environment, you are part of a team in your own
domain. However, before too long you start to collaborate within the larger
context of creatordom as a whole. At that point, your ability to work with
others in a large-scale development environment is perhaps your most
valuable asset.

Whole New Skills
It's very rare that developers work within as close quarters as we do on
Discworld – thus, even those with considerable coding experience are going to
find this a largely unique experience. There are things about multi-developer
environments you just don't learn until you start working in one.
I teach software engineering at my local university. The students I teach are
competent coders, who have even got a little bit of group-work under their
belts. None of them appreciate the intricacies of environments such as
Discworld because you simply have to be part of it. The things that software
engineering courses teach in the abstract are things you are going to learn
about first hand.
It's important to provide some caveats here. First of all, working well with
others doesn't mean you have to like the people you work with. It's always
better if you do, but perfectly satisfactory collaboration can occur even when
the participants hate each other. Gilbert and Sullivan for example had a
notoriously quarrelsome relationship, but it didn't stop them penning some
enduring popular works. Actually liking people isn't necessary - successful
collaborations can be born from affection, trust, or respect. Ideally you have
all three, but one is enough to build a working relationship. The problem
comes of course when none of these are present, but those circumstances are
thankfully quite rare.
It doesn't matter if you like the people you work with, it only matters that you
can work effectively with them. We can't force anyone to feel a different way
about another person than they actually do, nor would we want to.

Michael Heron Page 6

Working With Others, First Edition

Part of the skill-set you need to build as a creator is the ability to successfully
collaborate. That involves a whole lot of concepts that are new to most people
– it involves understanding a complex and dynamic social context, as well as
understanding the software development process. It involves becoming
familiar with technologies that are often for rather alien purposes. In short,
it's learning a whole lot of entirely new skills.
People tend to look down on MUDs as development environments because of
the stigma attached. Most MUDs are vanity affairs in which a handful of
coders put together an ad-hoc, unprofessional game based on some stock
code-base. Such games rarely have more than a dozen or so players, and those
players tend to be drawn from already formed social circles.
Discworld is not one of these MUDs… Discworld has existed since 1992, and
had over a thousand developers working on it at one point or another. There is
over a gigabyte of source code, spread over seventeen administrative
domains. There are objects in the game that have been in constant use since
the MUD was first opened. There is an extremely complex object hierarchy
and system of handlers in which very subtle interrelationships of code cause
the strangest and most bizarre observed behaviour. In short, it's far more
complex than the vast majority of ‘real world' developments.
We are also a volunteer environment, and that introduces a whole range of
new issues. We don't expect people to know how to code. We don't expect
people to understand formal software development. We don't expect people to
know about the complex etiquette that goes along with multi-developer
environments. Over the years, that has led to an adoption of code written to
dozens of different standards, in dozens of different styles. That causes many
problems.
It's hoped that this material makes you understand the importance of some of
the fairly abstract things we tend to insist on, and why they are not arbitrary
exercises in nit-picking. There's a good reason why we ask you to do all of the
things we ask you to do.

Standard Standards
This is a rather grand heading for something we don't actually have...
Within Discworld, we all realise that those who come as developers do so as
volunteers. That means we have fairly limited leverage in forcing a particular
agenda. To be sure, domain leaders have the authority to hire and fire within
their own domains, but we much prefer to have people working with us than
not. As such, things like our style guidelines are only inconsistently followed.
It's my hope that, after reading through this material, you understand why we
ask for these things, and that through knowing the intention you'll actually be
motivated to follow the standards. It's too late for a lot of people, but if you're
just starting out with us it's a fantastic opportunity to get into the habit of
writing code that is structurally clean.

Michael Heron Page 7

Working With Others, First Edition

I would like to add a word of warning here – the things that I am going to talk
about are surprisingly emotive issues. You will find creators trying to insist
that their particular formatting style is the best, sometimes 'humorously',
sometimes not. This is an extremely unhelpful situation, and I would ask you
to ignore any of these comments.
It honestly doesn't matter what standard of code that is adopted, the only
thing that matters is that everyone uses it. There is virtually no difference in
code readability from one standard to another, but it dips dramatically when
everyone is using their own standard. We compromise a little so that we all
have a more pleasant development experience.
I am in no way saying that the style of coding that is outlined in these
documents is the best way to layout code. I am making no value judgements at
all – however, we need to decide on one standard and this is the one we're
going to use. We'll talk about that in the next chapter.

Professionalism
Volunteers we may be, but we do like on the whole to maintain at least a
veneer of professionalism. Some of us are worse than others at that, but it's
an ideal to which everyone should aspire.
That means, your personal issues with someone shouldn't get in the way of
you fulfilling your obligations as a creator. If you and another person are
working on a project, then you have to put aside your disagreements enough
to allow a working relationship to emerge.
As far as is possible, you should keep personal issues off of the public
channels. If you feel you need to tear into someone for their (in your opinion)
gross incompetence then do it in tells. Otherwise it's just awkward for
everyone. Failure to do this is only going to get you a reputation as someone
who doesn't ‘play nicely' with others, and if that persists the only real option is
for you to be removed as the obstacle you are. This is an unusual step taken in
rare situations, but there are precedents of people who just could not get
along with anyone who are no longer creators.
It's often harder with some people than it is with others… in life, there are just
people who rub you up the wrong way no matter what they say or do. Your
best bet in such circumstances is to simply try and maintain a degree of
civility when interaction is required, and avoid them otherwise.
In situations in which you simply cannot resolve your differences, it's worth
looking for a mediator – ideally someone of higher rank than both so as to
allow for ‘binding agreements'. If your problem is with someone in your
domain administration, you should arrange for a discussion between all
members of the domain administration team to see how the situation can be
resolved.

Michael Heron Page 8

Working With Others, First Edition

In all cases, you want to provide a framework for constructive engagement
with your colleagues. Where that can't be achieved, you need to find a way to
simply be around them. Nothing sows more disharmony into your fellow
creators than a persistent and public slanging match. The creator channel,
and the boards, are not the place for that kind of thing.

Conclusion
We're going to cover a lot of ground in the chapters of this material, including
ground that will be entirely new even for a lot of experienced developers. In
all cases, I am going to ask you to engage with the material and not dismiss it
as an irrelevance. As I have mentioned above, there is a reason why we ask
you to code to a specific style. Although we can't really force it in the same
way that can be done when people are being paid for their effort, it makes the
MUD a much nicer place for us all to develop if we can rely on a little
professional courtesy from our colleagues.

Michael Heron Page 9

Working With Others, First Edition

Code Layout

Introduction
There is nothing that will make your code more readable than having a clean
layout. Inversely, there is nothing that will make your code less readable than
having a bad layout. There is a set coding standard than we have on
Discworld, and while it has been inconsistently applied over the years it is
something you should try to get into the habit of before you are Too Set In
Your Ways.
This is a surprisingly emotive issue for some people – for some reason, people
seem to invest a lot of their own self-worth in the choices they make in terms
of laying out code. The truth is, it doesn't matter in the least which standard
you choose to use – they're all equally readable. The only thing that matters is
that everyone uses the same standard. Don't be one of those creators who
stubbornly refuse to compromise on this point – it's stupid, and actively
unhelpful. Likewise, don't pay attention to those who try to force their own
standard upon you. Just roll your eyes and move on.

Code Formatting
This is going to be a rather dull section, but it's important that we talk about
it. I've already said this but I'm going to say it again – having a clean style for
code is the most important thing you can do to make your code readable. The
standard that we apply is as follows:

•Indent two spaces per level of coding structure.
•Lines of code no longer than 79 columns.
•The opening brace of a structure is placed on the same line as the
structure to which it belongs.
•All defines should be in UPPER CASE.
•Functions are all in lower case, with an underscore separating words. In
java, a function might be thisIsAFunction. In LPC, that would be
this_is_a_function.
•All for loops and if statement to have opening and closing braces, even if
they are not syntactically required.
•Use spaces, never tabs!

Michael Heron Page 10

Working With Others, First Edition

That's all – it's not much to remember, and once you get into the habit of it
you'll do it subconsciously. When I started coding on Discworld, my own
personal standard was contrary to all of these. As time went by, I migrated
towards the Discworld standard because it made things much easier for
everyone involved, and it came as no real cost to me.
Let's look at two bits of code, one without formatting, and the other formatted
to Discworld standards. First, without formatting:

void this_is_a_function() { for (int i = 0; i < 100; i++) {if (i % 2 == 0)
{tell_object(this_player(), i + " is an even number.\n");}else
{tell_object(this_player(), i + " is an odd number.\n");}}}

And then formatted to our internal standards:

void this_is_a_function() {
 for (int i = 0; i < 100; i++) {
 if (i % 2 == 0) {
 tell_object(this_player(), i + " is an even number.\n");
 }
 else {
 tell_object(this_player(), i + " is an odd number.\n");
 }
 }
}

Hopefully the latter example is obviously more readable. There are also
coding clues given for you – indenting to a different level depending on the
depth of the structure gives you an instant visual hint as to where opening and
closing braces should go. It demonstrates ownership – you know that the if
statement belongs to the for loop, because that's what the indentation shows.
Look at those two samples again, slightly altered:

void this_is_a_function() { for (int i = 0; i < 100; i++) { if (i % 2
== 0) { tell_object(this_player(), i + " is an even number.\n"); } else
{ tell_object(this_player(), i + " is an odd number.\n"); } }

This code won't work, and it's not immediately apparent why. On the other
hand, if we reformat it:

Michael Heron Page 11

Working With Others, First Edition

void this_is_a_function() {
 for (int i = 0; i < 100; i++) {
 if (i % 2 == 0) {
 tell_object(this_player(), i + " is an even number.\n");
 }
 else {
 tell_object(this_player(), i + " is an odd number.\n");
 }
}

The eye is instantly drawn in the second example to the fact a closing brace
doesn't exist where we would expect it to. The layout actually makes it easier
to code.
This additional readability can be lost when multiple people with different
coding styles work together on the same file:

void this_is_a_function() {
 for (int i = 0; i < 100; i++)
 {
 if (i % 2 == 0) {
 tell_object(this_player(), i + " is an even number.\n");
 }
 else
 tell_object(this_player(), i + " is an odd number.\n");
 tell_object (this_player(), "This is a line that appears on "
 "every number!\n");
 }
}

Rather than this code being easy to use because standards have been applied,
it becomes harder to read because inconsistent standards have been applied.
Now that we've seen the difference the formatting makes, we'll talk about
each of these rules in turn and why they are in place:

Indent Two Spaces Per Level of Coding Structure
There's no magic formula as to why two spaces is best, other than it gives you
slightly more screen real-estate to work with while still showing the
relationship between coding structures. I will emphasise something I said
before – people will try to convince you that the number of spaces they use is
a better way of laying out code than the number of spaces this document tells
you to use. Pay these people no heed, for they are deeply tedious. There is no
real difference between two spaces, three spaces, or four spaces. The only
thing that matters is that all agree to use the same level of indentation.

Michael Heron Page 12

Working With Others, First Edition

Lines Of Code No Longer Than 79 Columns
This is a readability issue – many people are still working within the 79
columns of a standard telnet display. If you have code that goes over that line
length, it is virtually unreadable.
For example:

set_day_long ("This is a lovely stretch of beachfront along the coast of the
"
"mysterious Pirates Cove. To the south can be seen the buildings of the "
"pirate settlement that has grown on the island. The masts of tall ships "
"pepper the horizon like the spears of an approaching army. Pirates Cove i s
"
"a popular stop for the many rogues who journey the Circle Sea, and the who
le "

Sadly, that's from a piece of my own code...
It makes even room descriptions hard to read, so imagine what it does for
complicated code structures.

The Opening Brace of a Structure
Once again, there's no reason why this should magically be so – it's just that in
order for there to be a standard, everyone has to do the same thing. As with
the two space rule, it provides a little extra real estate on the screen when
viewing things in the very restricted environment of the MUD.

All Defines Are In Upper-Case
Having an ‘at a glance' way to tell which values have been defined and which
are drawn elsewhere from the code aids tremendously in readability.
Moreover, when defines aren't in all upper case, it dramatically detracts from
readability because everyone expects the alternative. Violating that
assumption has a measurable impact on code comprehension.

Functions Are In Lower Case
This is usually a convention of the language rather than a convention of
Discworld particularly. The stylistic conventions obeyed as part of the
internals of the programming language define how our functions are to look.
The MUD's efuns for example use this_kind_of_standard and so that's what we
use for our own code. Otherwise we need to make a mental check each time
we use a function – ‘is this an efun, an sfun, or an lfun?' and choose the
formatting accordingly.

Michael Heron Page 13

Working With Others, First Edition

All Structures To Have Opening and Closing Braces
LPC allows you to omit these on for, while and if structures if you have a
single line of code to be executed:

for (int i = 0; i < 100; i++)
 tell_object (this_player(), "The number is " + i);

This is syntactically correct, and it will work as intended. However, when you
come back to add more complex functionality you need to remember to put
the braces in, and those who work with your code need to be observant
enough to notice that you haven't already put them in place. You gain nothing
from omitting them – it's like using an indicator in a car, you should use it
even if you're alone on the road because it's easier overall when such an
activity is an unconscious rather than conscious decision.
This is an example of an area in which competing formatting standards will
actually cause a decrease in readability. Imagine person one, who indents to
two spaces and doesn't use opening and closing braces. then person two, who
indents to four spaces:

for (int i = 0; i < 100; i++)
 tell_object (this_player(), "The number is " + i);
 tell_object (this_player(), "Some stuff\n");

The visual clue here suggests that these two statements are part of the same
for loop. In fact, only the first belongs. This kind of ambiguity can be reduced
by simple layout and clarity of expression:

for (int i = 0; i < 100; i++) {
 tell_object (this_player(), "The number is " + i);
}
tell_object (this_player(), "Some stuff\n");

Again, it costs you nothing to put in the braces, so you should get into the
habit of it being a ‘muscle memory' thing rather than a conscious choice.

No tabs
If you put a tab in your code, it creates a very ugly visual artifact when you
read it on the MUD – it gets interpreted as <TAB>:

bookcase->set_long("This bookcase is made from oak and "
 "varnished to bring out the glow. It has 2 shelves, "
<TAB>"upon which you can see some books, and other objects.\n");

Michael Heron Page 14

Working With Others, First Edition

Bleuch. That's horrible!
Instead, use spaces, never use tabs. Luckily, if you are using a good text editor
you can get the best of both worlds – you can tab as much as you like, and the
editor will simply interpret it as a set number of spaces.

Make It Easy On Yourself
Provided you have a good text editor, a lot of this can be handled for you.
We'll use Ultraedit as our example of this. Other editors will undoubtedly have
similar facilities, but these are left for you to discover.
First of all, we want to remove the tabs from our code. This is the most
important first step to take. Go to Advanced->Configuration, and that will
open up the configurations editor. Navigate to ‘Word Wrap/Tab Settings':

Three of our rules can be automated for you – make sure ‘use spaces in place
of tabs' is selected. Notice here that we can set the Tab Stop value and the
Indent Spaces value – set both of these to two. Finally, you can also automate
adherence to line lengths by setting the wrap method. Ultraedit will thus do a
big chunk of the work for you, without you needing to worry about it all.

Michael Heron Page 15

Working With Others, First Edition

Conclusion
Standards are a good thing, and it would be tremendously helpful if you could
get into the habit of writing your code to them. Over the years we have had an
inconsistent approach to formatting, varying across domains, individuals and
even time periods. While it may have been more convenient for single people,
we are a team trying to achieve a collaborative goal. Everyone has to be
willing to compromise on this to make the whole project work together better.
In the case of code layout, you're not even being asked to compromise much –
no matter how fond you are of your own particular style, it is not so much
better than any other style that it justifies the lack of clarity that comes from
inconsistency.
Additionally, please ignore those people who try to force you to deviate from
these standards with mockery, or bizarrely strident advocacy. There is nothing
Big and Clever about trying to undermine any effort to increase consistency of
code across a massive developer-base. In real world coding environments, you
code to the set standard or you lose your job – that's not an option we like to
consider here on Discworld – the best we can do is appeal to your presumable
desire to be a useful, valuable member of a highly integrated and collaborative
team.

Michael Heron Page 16

Working With Others, First Edition

Collaboration

Introduction
We are big on collaboration on Discworld. At least in theory. In actuality,
everyone has their own particular approach to how and when they
collaborate. However, game development is an inherently collaborative
endeavour, as the things that you make available in the game will have an
impact on many other things. If you make a bank available, it alters the flow of
money for all domains. If you add a vault, it affects game performance. The
connections are incredibly complex.
We have several good tools in place for enhancing collaboration, but they are
for naught if the will to collaborate is not present. In this chapter we'll talk a
bit about the collaboration styles you will tend to encounter, both here and in
'real life' environments.

The Social Context of Collaboration
The social context of an environment is one of the key elements in fostering an
atmosphere that supports collaboration. Every context has its own particular
features.
Discworld has a strong tradition of meritocracy in advancement, and this
meritocracy is usually demonstrated through a system of emergent authorial
leadership. In essence, you progress by showing yourself to be a 'safe pair of
hands' on the basis of the projects you are involved with and the contribution
you make. In addition to this is the value ascribed to seniority – combined with
the authorial leadership, authority accrues to those who have been around
sufficiently long to be considered 'tribal elders'. This pattern is also reflected
in the playerbase, where a distinction is made between 'newbies', 'midbies'
and 'oldbies'. The combination of these two social dynamics is common to
many collaborative, volunteer endeavours.
Collaboration is enhanced by the further tradition of 'ownerless code'. Code
on Discworld does not belong to any particular creator, although one creator
may take a greater or lesser interest in its upkeep and maintenance. Code
instead belongs to a domain in the first instance, and the MUD as a whole in
the second. It is not only possible for another creator to modify code you have
written, it is actually an active part of the development context. Everyone
owns the code in their domain, and there are creators who have wider
responsibilities that work across domains. It's important that you understand
your code is Communal Property, otherwise you'll find it very difficult to cope
– especially if your code is important enough for people to take an interest in.

Michael Heron Page 17

Working With Others, First Edition

A sense of shared responsibility over code, and a tradition of authorial
leadership, are important traits in a successful collaborative environment.
Although we predate it by a Good Long While, these features are apparent in
one of the most successful of modern collaborations – Wikipedia.
However, the social context is modified by the people who are involved, and
some people simply do not collaborate. Our environment facilitates
collaboration but doesn't mandate it – you don't need to take anyone's views
on board while doing your development with the exception of those of your
domain administration. Some people work best like this, but it's not a mindset
which we like to encourage.
There is often a generational gap that comes along with willingness to
collaborate. Older developers may be less willing to engage in such a process,
because they perceive development as a solitary effort. This is not something
that is especially pronounced in Discworld, but it can be observed in other
environments. Younger developers now grow up in an atmosphere of extreme
collaboration, brought on by a culture of social networking and the prevalence
of shared wiki tools. Older developers are less familiar with this as a mindset,
and so are often somewhat resistant to broad and indiscriminate
collaboration, preferring to collaborate instead with a few hand-selected and
trusted colleagues.
Different people have different ideas about what collaboration actually means.
Does it mean the intense collaboration of something like Wikipedia where
changes are small but accumulate with the weight of an avalanche? Or does it
mean that one person writes something, and another person writes a bit, and
the first person writes a bit more – essentially serial development. Or does it
mean that both individuals make their own attempt, and then the best of these
two attempts are merged together? All of these describe different, but
perfectly acceptable, models of collaboration.
You also tend to encounter one or two people who actively disapprove of
collaboration. It's not just that they don't collaborate themselves, but they
actively despair of collaboration in general. Authors such as Jaron Lanier have
written of an encroaching 'digital Maoism' in which individual ability is
swamped by the mediocrity of averages.
When building a social context, it is important to start with the people. For
collaboration to occur, first and foremost there must be a will to collaborate.
Some environments are set up in such a way that collaboration quite simply
will not happen. In a now-famous paper, Wanda Orlikowski discusses an
attempt to introduce a groupware product to a team of consultants; the
implementation failed, due to endemic social issues stemming from
competition and no tradition of mutual trust, as well as a deep lack of
communication as to what the tool was for.

Michael Heron Page 18

Working With Others, First Edition

The mindset many developers adopt when introducing collaboration
technology is what I like to refer to as the Field Of Dreams mindset – 'if we
build it, they will come'. Experimental evidence however shows that this is
hardly ever true – people have to see a need before they make use of the tool.
Collaboration tools work only if they make existing social processes easier to
mediate.

Development in Volunteer Environments
Why do people choose to give their time and effort, for free, to a cause like
Discworld? Everyone is going to have their own reasons for this, but there are
certain commonalities within different projects.
Many people report 'altruism' as a reason for participation. Whether altruism
actually exists or not is a philosophical quandary, but what can't be denied is
that people often feel a pull towards a cause in which they believe.
Presumably you enjoyed your time playing Discworld, and felt sufficient draw
to the game that you wanted to devote your time to making it better. This is
something reported often in open source communities.
However, there are many additional benefits that come from participating in a
project like this. For one, you develop many skills that are genuinely
marketable. A number of Discworld creators have profitably included their
development experience on their CVs when applying for jobs, and attribute at
least some measure of their success in those interviews to the skills they have
developed here. Many professional developers despair of the lack of attention
paid in university educations to 'operational skills' such as dealing with source
control – Discworld gives developers exposure to the complexities of working
within a codebase of quite staggering complexity and size. That's something
that sets you apart right away from many other developers.
There is an interesting element to how people choose to join as creators in the
first place – unlike most volunteer coding movements, Discworld does not
incorporate simply any change from any interested developer. Instead,
Discworld is a 'hybrid open source' environment in which the game files are
secret, the driver is freely available, and public releases are made of the core
mudlib. Self-selection of contributions is a big feature of environments such as
Linux or Apache, but it is not reflected in our approach to development.
Developers self-select in so far as they choose to apply, but the process is
much more like applying for a job than it is developing for Linux as a
movement. This has issues of scale that often manifest themselves – when a
domain leader is absent, a domain can grind to a halt.
The administration of a domain is responsible for the ultimate vetting of
quality. The playtesters domain is an opt-in service for those domain leaders
who wish to make use of it, but the exact system for determining whether or
not a development is to go into the game varies from domain to domain. Some
domains make extensive use of peer review (as Forn did during its
development of Genua), while others have more informal processes in place.

Michael Heron Page 19

Working With Others, First Edition

What Are The Benefits of Collaboration?
There are several benefits that come from collaboration. Linus Torvalds, the
man responsible for building the first version of the Linux kernel, is credited
by Eric Raymond with formulating Linus' Law. This states, informally, that
'given enough eyeballs, all bugs are shallow'. Collaboration allows us to
harness the different skills and abilities of many people – we end up with the
whole being more than the sum of its parts.
It's often surprising the wealth and depth of experience that is available when
you widen the parameters of your search. In any room of average people,
you'll find individuals with the strangest combination of skills – some because
of their occupation, and some because of their hobbies. The combination of
skills that people develop over the course of their lives lends a unique
perspective to their views and opinions – everyone views the world through
the lens of their own experience.
Aggregating the views of people with multiple sets of skills and abilities can
lead to results that are better than any single individual is capable of
producing. The book 'Wisdom of the Crowds' by James Surioweicki is an
extremely interesting discussion of this, and it is very relevant to the idea of
intense collaboration in programming environments.

Collaboration Tools on Discworld
We have numerous tools for persistent communication and collaboration
within Discworld. At the simplest level is the internal mudmail and board
system – these allow for communication, and at the core that's what
collaboration is all about. However we also have two tools that fall into the
more modern category of 'collaboration software'. The first of these is our
extensive wiki system – we use the TWiki engine — with each of the main
domains having its own wiki web for collaboration. Some of these are quite
extensive, while others are used infrequently.
There is a point of critical mass that needs to be reached for such tools to get
momentum. Simply using a tool, even if no-one else is using it, can generate
interest, and that can in turn generate further contributions. All it takes is one
person to get the necessary traction. Encourage people to read your
contributions – direct them to your wiki page when you're asked questions.
Get people to look, and you might just get people to join in.
The Wiki may be found at
http://discworld.atuin.net/twiki/bin/view/Main/WebHome. Have a read through
– you may be surprised at what you find.

Michael Heron Page 20

http://discworld.atuin.net/twiki/bin/view/Main/WebHome.

Working With Others, First Edition

The second tool we have is our bespoke knowledge management software –
the Discworld Oracle. This is a system for collaboratively eliciting the
considerable knowledge and expertise of our creator base. I would encourage
anyone who has a question, no matter what the question may be, to check
Oracle to see if the information is available, and then ask the question if it is
not. Everyone who asks a question is engaged in the task of knowledge
elicitation – you are helping to make information available for all those who
follow.
The Discworld Oracle may be found at
http://discworld.atuin.net/lpc/secure/creator/oracle/oracle.c. Please contribute
anything you think might be of interest, and ask any questions that come to
mind.

A Suggested Collaboration Process
First of all, your task is gathering ideas. You'll undoubtedly have many of
these yourself, so create a wiki page for your project and outline them. You'll
find there are people in the creatorbase who read every change made to the
wiki (I'm one of them, I'm a wikiholic) so even if no feedback is received it
doesn't mean your contribution hasn't been read. Update the page as thoughts
occur to you – it can be a useful project planning document for you and for
your domain leader.
For a domain leader, keeping track of where each project is and how complete
it is is a complex task. The best thing that you as a developer can do to ease
this task is to keep your own developer page up to date - that can be
tremendously helpful. If you are developing a specific area, you might want to
consider making an abstract of the area available on your domain wiki,
outlining features and quests. Have a look at
http://discworld.atuin.net/twiki/bin/view/Forn/MainGate as an example of this;
the entire city of Genua can be navigated in the abstract, and this was a very
valuable tool for when we were making sure the city was feature complete.
Small areas may not lend themselves well to this, but it's great when you can
make use of it.
Once you've got your wiki page up and running, try making a post to your
domain board outlining what your plan is and where the wiki page can be
found. A simple request for 'any thoughts people may have' can elicit many
useful suggestions (though sometimes, no suggestions at all). Occasionally you
will find that a project has interest to someone beyond the people you would
normally expect, and that can lead to profitable, albeit unexpected,
collaboration. As an example of this, if you were coding an island full of
pirates, it would certainly be of interest to me as part of the development of
the piracy system.

Michael Heron Page 21

http://discworld.atuin.net/twiki/bin/view/Forn/MainGate
http://discworld.atuin.net/lpc/secure/creator/oracle/oracle.c.

Working With Others, First Edition

If anyone expresses a particular interest, have a chat with them to see the
level of their interest. You may find people who are interested in supporting
particular parts of the development, or who are interested in hooking in code
of their own. All of this is a great opportunity to make your area richer than it
would be when developed from the perspective of an individual.
Check with your domain administration to see if you can canvass the
playtesters for suggestions. The ptforum board is a great place to see what
ideas they may have for things they would like to see, or things that they
definitely wouldn't like to see. The more perspectives you can solicit, the more
of a pool of good ideas you'll have to choose from.
It's important to note here that this doesn't mean you abdicate ownership of
your project – you are soliciting feedback, but that doesn't mean you're
obligated to use it all. It's just that getting a wider range of perspectives will
give you a much better foundation from which to develop your thinking.

Conclusion
Collaboration is an entirely social problem – you should not confuse the tools
with the concept. Our tools exist to support existing social dynamics, not
supplant them.
Collaboration is an important part of what we do on Discworld – everything
impacts on everything else in very complex and complicated ways. Our unique
cultural makeup has led to the emergence of certain organisational norms – a
shared ownership of code, authorial leadership based on meritorious
contribution, and a general respect for those who have contributed long
enough to have become 'tribal elders'. All of these help support an
environment in which collaboration can flourish, but it still requires critical
mass for it to be effective. You can either be a barrier to collaboration by
looking inwards, or you can be a spark for further collaboration by doing your
best to solicit feedback.

Michael Heron Page 22

Working With Others, First Edition

Social Capital

Introduction
Social Capital is the glue that keeps a society together. As a term, it refers to
the reserves of trust, respect, collegiality and norms of reciprocity that exist in
social networks. It's a measure gaining considerable traction in sociological
and economic debate – while it can't be quantified, it provides valuable
qualitative analysis of the level of function and dysfunction in an
organisational environment.
What we're going to talk about in this chapter is how social capital is built in a
online technical context like Discworld. The creator-base has a rather extreme
reputation for 'creator politics', but in the main this stems from a handful of
isolated but extreme problems, rather than being a systemic feature of the
environment.

Creator Politics
The fact is that creator politics are nowhere near as endemic as the popular
player perceptions would indicate. Player perceptions are distorted by the
handful of disproportionately loud examples of ex-creators who were either
fired, or resigned, because of their inability to integrate into our working
environment. Those who complain the loudest about not being promoted
because of 'politics' are those who, invariably, have not played their part in
engaging in the collaborative process of building a lasting reserve of social
capital.
That's not to say that there are no politics – as soon as you put more than one
person in a room, politics suddenly happen. Politics is the word we give to the
necessary friction and abrasion that comes from people having multiple,
perfectly valid, viewpoints.
Many outlandish claims are made about creator politics. There are claims of
institutionalised nepotism, lasting grudges, and projects that have been killed
because the wrong person was involved with them. While there will be
examples of each and every one of these, they are not widespread – they stick
out precisely because they are not widespread. Follow the gingerbread trail
of rumours to their sources, and you'll find that a small number of bitter ex-
creators are responsible for their perpetration. These creators, without
exception, found it difficult to work as a creator because of their own
unwillingness to engage fully in the process.

Michael Heron Page 23

Working With Others, First Edition

So, put these complaints in perspective. The politics of Discworld creators are
no more cut-throat than the politics you will encounter amongst any group of
people. If you are mature enough to try and work with other people, you'll find
they are willing to try and work with you.

The Ten Commandments Of Egoless
Programming

Way back in 1971, a guy called Jerry Weinberg wrote a tremendously
influential book – the Psychology of Computer Programming. In this book, he
outlined a mindset he termed 'egoless programming' as a way to deal with the
often emotive issue of ensuring quality in software development projects. His
system revolved around the ten commandments that tend to lead to a more
positive, collegial relationship between software developers. As a
'consciousness-raising' exercise I would like to outline them here because they
serve as a useful set of precepts for how trust and respect flow in
development. The commandments are his, although the commentary is mine.

Understand and Accept You Will Make Mistakes
We all make mistakes – some of us more than others. The consequences of
these mistakes may be minor, or they may be a major inconvenience to the
entire user-base of the MUD. I once made a particularly bone-headed error
that locked the MUD up tight for a good hour, something that would have
been impossible to do if I hadn't explicitly switched off the sanity checking
built into the driver. You will make mistakes – learn from them, and move on.

You Are Not Your Code
When people criticise your code, they are not criticising you – at least, they
shouldn't be criticising you. If they are, then it's a problem with them
personally. Constructive criticism is very valuable – it's how you learn from
people with a little more experience. In order to accept constructive criticism,
though, you need to divorce yourself from the code you have written – you
need to be able to take a dispassionate view and say 'Ah, yes – it does indeed
have defects I need to address'.

Michael Heron Page 24

Working With Others, First Edition

No Matter How Much "Karate" You Know, Someone Else Will
Always Know More.

It doesn't matter how good you are – there's always someone better. There's
one person in the world for whom that isn't true, and that person is
perpetually looking over their shoulder for the day that it is. Moreover,
everyone has their own particular areas of expertise – even if you consider
yourself the Top Guru in a particular area, someone else is going to know
more in another. Creating on Discworld requires a very odd blend of skills,
and some people have these skills to greater or lesser extents. Even if you
know you're good, don't let it go to your head – the chances are you're not as
good as you think you are.

Don't Rewrite Code Without Consultation
We don't encourage creators to 'own' code on Discworld – code is a communal
resource. However, that doesn't mean you can write code without regard for
other people. This is especially true when you are working with lower level
inherits and critical handlers – there is an etiquette that goes with rewriting
code, and it is vital you adhere to it. If you are going to do some serious
remodelling of important code, then make sure you consult with the people
who are likely to be affected.

Treat People Who Know Less Than You With Respect,
Deference, And Patience

I have my doubts about 'deference', but the general rule is strong. Everyone
was a beginner at one point, and if those to whom we had turned for help had
mocked and dismissed our queries, the chances are none of us would be here
at all. It's an act of considerable courage to ask for help, and it's in everyone's
best interests for every creator on Discworld to be as good as they can be.
Encouraging and constructively engaging with creators who have queries is
the best way to foster an atmosphere in which self-evaluation and
improvement is possible.
Additionally, the very act of asking a question can add value to the creator-
base. A good question will tax the understanding of the teacher as well as the
student; the teacher gains a little extra clarity, and the student gains the
understanding they desire. If questions are asked through the Oracle system,
then a good question is worth its weight in gold to the creators who come
after you.

Michael Heron Page 25

Working With Others, First Edition

The Only Constant In The World Is Change
On Discworld, we are not beholden to the whims of our clients. Our clients are
the players of the game, and they play the game which we provide. In other
organisations this is not the case – when a client asks you to make a change,
you make it.
However, even though we are the ones setting the development agenda, we
all still need to learn to deal with changes in fundamental coding tools and
systems. Changes elsewhere in the game will impact on the code you are
writing, and you must be willing and able to adapt your code to deal with
emerging situations.

The Only True Authority Stems From Knowledge, Not From
Position

Those who have attained higher rank in the creatorbase have usually done so
on the basis of their contributions to the game. While you should accord
people the appropriate level of respect, you shouldn't confuse position with
authority. The newest creator may have more knowledge of a particular area
of the game than the most senior creator, and you shouldn't allow the position
of the latter to override the expertise of the former.

Fight For What You Believe In, But Accept Defeat Gracefully
Everyone has a different view on what's important in the game, and everyone
has a different view on what will improve the game. It is important that you
fight for what you feel to be right, but you also have to realise that the
authority for making the ultimate decision usually does not reside with you. In
such circumstances, it's important to let go of the debate and accept the
conclusion, even if you personally disagree with it. We've all had to live with
the consequences of decisions that we didn't like.

Don't Be The "Guy In The Room"
The "Guy In The Room" is the one who doesn't engage with the rest of his or
her team. The Guy has a project, and writes the code for that project without
collaboration or input from others. The "Guy In The Room" doesn't know
what's going on and isn't really a part of the team. Not knowing the broader
context in which code is being developed and deployed is a major
disadvantage in an environment like Discworld, and you'll end up doing
yourself more harm than good.

Michael Heron Page 26

Working With Others, First Edition

Critique Code Instead Of People – Be Kind To The Coder,
Not To The Code

Too many people don't understand what 'constructive' means. Additionally,
too many people deliver criticism without even a basic understanding of
human psychology – there is a reason why such people very rarely manage to
convince others of the worth of their remarks. Critiques should focus on the
code, and not the coder. 'You write code that is full of problems' is an attack
on a person, and that's never going to get someone on side. 'There are some
problems that need to be resolved with this code' focuses the remarks where
they belong. Of course, if Commandment One is not being observed, it's not
going to make a lot of difference.
The number of people who don't understand the most productive way to
deliver criticism is staggering. In the main, it's how you do it rather than what
you say. To begin with, concentrate on everything that is right about the
artifact in question – start with the positive, and then introduce a discussion of
the negatives. If necessary, interleave positive and negative feedback to
ensure you're not simply giving a laundry list of flaws. The important thing
about positive feedback is to front-load it – it's counterproductive to start off
with negative feedback since it just puts people on the defensive, and even if
there are positive comments at the end, you've already lost the chance to win
someone around to your way of thinking.
Inability to deliver criticism correctly is the leading reason why some people
just can't get others to listen to their feedback.

Trust and Common Ground
Perhaps one of the trickiest aspects of this system is that it requires you to be
able to trust and respect your colleagues. Trust is the alchemical property that
makes sure teams keep functioning even when there are breakdowns in
communication, conflicts of interest, or simple personality clashes.
Invariably there will be people you trust more than others, and with whom you
feel these commandments can usefully apply. Conversely, there will be people
you don't trust, either in terms of their personality or their competence – the
thought of following these commandments with these people would be
laughable. However, once trust is built it can work effectively to bridge the
day to day problems that collaborative development will introduce.
There are several ways in which trust can be built in any organisational
environment. They are based on a genuine willingness of all participants to
work towards a common understanding.

Michael Heron Page 27

Working With Others, First Edition

First of all, trust is built on common ground – this is the set of principles and
issues on which you and your interlocutor can agree. This involves a certain
amount of give and take, and a willingness for each to see things from the
other's perspective. Unwillingness to build common ground on the part of one
participant is a sign that they are either not interested in — or not capable of
— participating in a constructive dialogue.
Common ground tends to increase on the basis of familiarity with individuals,
and familiarity with a particular environment. It is particularly strengthened
when it involves shared experiences or a shared background. Common ground
requires a willingness for individuals to compromise – in organisations, it's
based on the willingness of an individual to be integrated into a complex
community, rather than being an outsider unwilling to consider more
productive engagement. Most organisational culture is a manifestation of
common ground within a particular operational context – the 'work songs' of
IBM in the fifties were comical, but they served their purpose in creating (an
arguably somewhat dangerous level of) common ground.
Common ground can be maintained by simply 'keeping people in the loop'.
That doesn't mean that everyone has to be updated about every little detail of
your project, but it helps if you touch base with the right people at the right
time. This helps resolve ambiguities about what people are doing, and
prevents small problems becoming larger conflicts. Conversely, conflict
causes people to withdraw from the process of building common ground,
creating a self-reinforcing cycle of disharmony.
It may sound trivial, but common ground requires constant calibration. It's not
something that is achieved and then you move on, it's something you
continually work towards.
Even when common ground disappears, trust is often enough to ensure the
resilience of a team of people over the short term. Where there is no trust, our
assumptions of motivation are always flavoured negatively – we assume
people are doing things for the worst reasons, rather than for the best. When
there is no trust, there is no will to collaborate, and this strikes at the heart of
the way our environment works. When there is no trust, mistakes are hidden
rather than brought out for everyone to help resolve. When there is no trust,
people are less willing to say 'I don't know', and that is no good for anyone.
So, if we know how common ground is built, how do we build trust? Sadly, this
can be much harder to do in an online rather than an offline environment.
Trust is built as a consequence of informal social interaction – coffee breaks,
having lunch together, and idle chit chat. We do have channels for discussion,
but our environment poses numerous extra challenges.
For one thing, there is an inherent ambiguity in the medium. If you ask me a
question, and I don't respond, why is that? Is it because I'm not actually at my
keyboard? Am I actively ignoring you? Did it just slip past as I blinked during
a wave of debug spam? It's hard to tell.

Michael Heron Page 28

Working With Others, First Edition

Likewise, there is none of the nuance in written text that comes with face to
face communication. The words themselves are only a part of what we project
when we talk to someone – tone of voice, facial expression, and body language
are all vital in decoding the actual intent of the words. We have smilies in text,
but they do not do nearly enough to bridge the gap. Where trust already
exists, one can read the best intentions into communication. Where trust
doesn't exist, we can read the worst.
One of the easiest ways to completely demolish any initiative to build trust is
to talk behind someone's back rather than bring it up directly – people almost
always hear the backroom gossip anyway, and when they do it lowers you in
their perception. My own personal rule for this is 'Never say in private what
you are unwilling to say in public'. While that may get me a reputation for
being 'A Bit Of A Dick', at least people are sure that if I have a problem with
them, I will bring it up directly rather than passive-aggressively.
Additionally, the simple nature of our distributed developer base is
problematic – it's often not possible to get immediate feedback on such
communication because it was written asynchronously – we were sleeping
when it was written, and now the person who wrote it is asleep while we read.
Keeping the channels of communication open are the best way to build trust –
just talk to people. It doesn't have to be about the game, although if you have
a project that's exciting you can go a long way by communicating that
excitement. In our particular environment, individual initiative is hugely
important, because it's what allows you to work when there is no instantly
available authority – while you need to touch base with your domain
administration, you also don't need to wait for them to approve every little
detail.
Of course, this is a two-way street – you don't build trust if you're the only
person doing it. Everyone needs to be willing to work towards it.

The Trust Triad
In the end, trust boils down to three key elements. If you trust someone, you
have to:

•Have the capacity for trust. Some people are so damaged by their life
experiences that they simply find it impossible to let themselves trust
others.
•Have confidence in their competence. The person with whom you are
building a trust relationship has to have demonstrated their capability
within their role.

Michael Heron Page 29

Working With Others, First Edition

•Have confidence in their intentions. Where ambiguity rules, it's your
confidence in someone's intentions that will carry you through. If you trust
someone, you have to believe that they are actually doing what is best for
the game rather than what is best for themselves.

As to the capacity for trust, that's an internal measure. The only one who can
build that is you, and deeply seated trust issues are well outside the scope of
this material.
The other two are professional measures, and they are driven partly by you,
and partly by the other person. There's a great old saying, 'Never attribute to
malice what can adequately be explained by incompetence' – it's an aphorism
of dysfunctionality in team work. In a team that is functioning properly, you
shouldn't have to rely on either extreme. You'll simply accept the fact that
'people make mistakes' (Commandment #1), and work to fix it.
Another word for this kind of institutional trust is 'respect'. Notice nowhere
does it say you have to like someone; you just need to have sufficient respect
in them and their abilities that you can assume the best. You can like people
and not respect them, and you can respect people but not like them. The best
state, of course, is when you both like and respect them. If you can only
manage one though, try for respect.
I have often made the statement that 'respect is earned, not given', which
invariably causes disagreement along the lines of 'you should start off
respecting people'. This disagreement, I feel, is due to a lack of common
ground as to our perception of what respect actually means. The absence of
respect is not disrespect. You should, by all means, be civil — even friendly —
to people who you have no cause to respect. Active respect, though, demands
a little more from both parties. It requires adherence to the 'trust triad'
outlined above and this can't be done with someone you've only just met. They
need to have proven themselves, and shown that their intentions can be
trusted. That takes time, and a willingness to actually build that trust, and it
needs both parties to engage in that process.

Conclusion
For all you hear about 'creator politics', the fact is that we do try, in the main,
to get along. There are always politics – that's what happens in life. You put
people together, and politics is one of the by-products of whatever activity was
the intention. There are examples of systemic distrust between individuals,
and examples of complete breakdowns in communication. If you look a little
deeper though, you can often find that the reason for such situations is that
one or more of the participants have simply withdrawn from the exercise of
building trust and maintaining common ground.

Michael Heron Page 30

Working With Others, First Edition

If you keep this as an active priority in mind when developing, you'll find it
easier to function in our somewhat overwhelming world. People who get on
well with people have a 'superpower' all of their own – they keep the MUD
running when communications have broken down between others.

Michael Heron Page 31

Working With Others, First Edition

The Dark Art of Refactoring

Introduction
A lot of what we do as creators is tidying up code that has already been
written. Technically this is known as 'refactoring' code. It has something of a
reputation as a 'dark art' amongst programmers, mainly because so few
genuinely understand what the process of refactoring involves. It's actually a
very simple principle, albeit with technical complications that go with it.
In this chapter we're going to talk about refactoring – how it's done, why it's
done, and most importantly of all, how it shouldn't be done.

Refactoring
Put in its simplest, most accessible terms – refactoring is the process of
turning bad code into good code, while not impacting on any of that code's
functionality. Refactoring is ideally an invisible process – if you do it right, no-
one should know you did anything at all.
Refactoring is not about adding extra functionality, although it may be a
precursor to this. It's also not about fixing bugs, although bugs may disappear
as a consequence. Many of the oddest random bugs are a result of badly
structured code, and cleaning up the internal architecture of a problematic
object can result in real, observable improvements even though that was not
the actual intention.

Good Code
Part of the problem people have with refactoring as a process is that it is
inherently subjective. It's usually pretty easy to identify bad code, but it's
much more difficult to identify good code. Different coders will vary in their
opinions as to what exactly a good piece of code looks like, and this
subjectivity is at the heart of what makes refactoring somewhat non-intuitive.
As you grow more experienced as a developer, it becomes easier to identify
code that you personally class as good - that judgement is built on the basis of
experience. 'Ah, yes – I've worked with code like that before, and it was easy
to make my changes'.

Michael Heron Page 32

Working With Others, First Edition

Since refactoring is the process of turning bad code into good code, we need
to have a pretty solid grasp of how the code should be improved. You need to
be sure your change won't introduce new problems – there's no point after all
rewriting bad code so it becomes different bad code. We want the quality of
the code to actually increase from our efforts.

Impact of Change
Before we get to the discussion refactoring properly, let's talk about a concept
that doesn't get enough discussion on Discworld – the impact of change. In
its simplest term, this relates to the number of objects that will need to be
altered if you change core functionality in another object.
Discworld has, in the main, two kind of objects that carry with them a
potentially high impact of change. The first are handlers, such as the armoury
and the taskmaster. The impact of change that goes with each will vary with
how widely they are used. To get a clear picture in your mind, think 'What
would happen if I broke this object right now?'. If it's something like the state
change handler, it may go unnoticed for a short while. If it's the taskmaster,
everyone will be complaining in seconds. This gives you a rough measure of
the impact of change.
On the other hand, if you break a single room in an area, then that one room
becomes inaccessible. That's not a huge deal. Break the inherit that every
room in that area uses, then the whole area becomes inaccessible. That's a
bigger deal. Break /std/basic/room and the entire game world becomes
inaccessible. It is this that defines the impact of change.
On the whole, you can get by with four categories of object:

Object Impact Examples
Critical Core handlers, the lowest level of

inherits (the ones that every single
object inherits).

High Other mud-wide handlers, and the rest
of the inherits in /std/.

Medium Local area handlers, area level
inherits

Low Single rooms, single NPCs, single
items

That's one measure of impact of change. The other measure is how many
objects make use of the functionality of another object. There is usually a
fairly close overlap between categories.

Michael Heron Page 33

Working With Others, First Edition

There are rules that go along with refactoring, and one of these rules is to be
very careful when dealing with objects with high impact of change. Object
orientation as a programming framework also has a number of tricks for
making objects as amenable to change as possible. We'll talk about them in
this chapter also.

The Rules
Here are the rules that go with refactoring. Note, these are rules, not
guidelines. A good software development process will obey these rules and
have punishments for transgressing them.

 1. Methods and variables may be made more visible. They may not be made
less visible.
 2. The functionality of public methods cannot change. If a public method
does X, it should continue to do X (and nothing more or less) after it has been
refactored.
 3. The return type of a method cannot change unless that change is for it to
be less restrictive (from a string to a mixed, for example)
 4. The name of a method or public/protected variable cannot change.
 5. The parameter list of a method must remain the same, or there must be a
translation scheme in place for a change.

These are restrictive conditions, and necessarily so. In a massive code-base
like Discworld, you have to assume that if something is accessible to other
objects, then some other objects have made use of it. People will have looked
at the object and said 'Wow, the do_groovy_stuff method does exactly what I
need' and then made use of that method in an entirely unrelated piece of code.
By default, all methods and variables in an LPC object are publicly accessible.
That means every object in the game has access to the methods, and also to
the variables (although variables are at least a little protected by the
comparatively primitive object model of LPC). Protected methods and
variables are available only to the object in which they are defined, as well as
all subclasses (all classes that, somewhere along the way, inherit the base
class). Private methods and variables are accessible only to the object in
which they are defined – no external objects, and no subclasses. These are
known as visibility modifiers.These also map onto categories for impact of
change:

Michael Heron Page 34

Working With Others, First Edition

Visibility Modifier Impact of Change
public High
protected Medium
private Low

Thus, an example of a forbidden refactoring would be to turn a public method
into a private method. This breaks our first rule – it reduces the visibility of
the method. Any object making use of that method will break as a result of our
refactoring.
We could take a private method and make it public – this increases the
visibility, but is almost never a good idea. There's usually a reason why a
method has been given restricted access rights. This isn't the place for a
discussion of proper object oriented design though – you'll find more of that in
LPC For Dummies 2.
You can't change the return type of a publicly-accessible method without
violating the rules. This, for example, would be a forbidden refactoring:

int add_nums (int num1, int num2) {
 return num1 + num2;
}

Into:

double add_nums (int num1, int num2) {
 return to_float (num1 + num2);
}

Likewise, you can't change the type, order, number or meaning of parameters
in a method unless you provide some way for that change to be transparent to
all the objects making use of it. This would be invalid:

int add_nums (int num1, int num2) {
 return num1 + num2;
}

Into

int add_nums (double num1, double num2) {
 return to_int (num1 + num2);
}

Michael Heron Page 35

Working With Others, First Edition

The rules of refactoring are in place to make it a more pleasant environment
for everyone to work within. If everyone is obeying them, the chances are
greatly reduced of you logging in one morning to find none of your code
working the way it did the night before.

Breaking The Rules
Sometimes it's okay to break the rules. Mostly this comes along with the
access you have to fix the problems that come along. Imagine you are a young
turk, looking to make your name with some great improvements to /std/basic/
desc.c. Someone gives you access to that code, and you decide 'Ha, set_short
is too limited. I'm going to make it take half a dozen parameters, all of which
will be mandatory'.
That's not allowed, because it would break... well, almost everything. In this
hypothetical situation, the only access you have is to that file directly, not
every file that uses it. The rule is, 'if you break it, you fix it', and if you can't
reasonably fix it, you don't get to break it.
On the other hand, if you have write access to /d/waterways and you want to
break something in /d/waterways/handlers then, with care, you can break the
rules because you're in a position to fix everything that might be using the
code. Sometimes refactoring is a task involving many objects, not just one
object or one method.
Additionally, you can use common sense to tell whether or not anything is
likely to be using the method in question. If you have a method 'check_things'
in an obscure room in an obscure area, then go ahead and change that method
if you need to – you'll only need to fix that one room after all. It's extremely
unlikely that anything else will break as a consequence, even if it is a public
method.
Let the impact of change categories guide you – if it's critical or high, don't do
it. You'll break more things that you can realistically fix. If it's medium or low,
then proceed with caution. Just be prepared to fix anything you may break.
Sometimes, although the situation is rare, someone needs to change
something critical even though it is almost guaranteed to break other objects.
When add_action was removed from the driver, or when type-safe checking
was implemented – this was changing driver code, so it impacted every object
in the game. If something has to go, then it has to go.
There's a process that you go through when this is the case, and it's
something like this:

•Announce the deprecation of a piece of functionality.
•Provide a list of objects that will need to be fixed.

Michael Heron Page 36

Working With Others, First Edition

•Post a deadline by which the code must be changed, along with guidance
as to how changes should be implemented. Be on hand to help with this.
•When the deadline is reached, give a few days' notice before you make the
changeover. Give a date at which time the change will be made. Don't say
'in the next few days', be specific.
•Make the change, even though things will probably break.
•Fix the things that broke.

This is a time consuming process, and one that we don't go through very often
because it's a big hassle for everyone involved. It's only permitted in extreme
situations, and if you have to ask yourself whether you have the authority to
make such a change, the answer is you don't.

Refactoring
So, what kind of things do we do in refactoring? There are several, but the
most common things are:

•Removing dead code
•Making inefficient code more efficient
•Making code more readable
•Making code more maintainable

Ideally, refactoring is a proactive process – you do it as an ongoing part of
development. In reality, we tend to refactor only when there is a problem with
the code with which we are currently working. Refactoring is normally a first
step towards adding new functionality. When we refactor, we are looking to
make the code look the way it would have done if it were written properly the
first time.
Refactoring can be as simple as changing the name of a variable to something
more meaningful; however, if this is a publicly-accessible variable, even that
trivial change can break code.

Michael Heron Page 37

Working With Others, First Edition

Sometimes, it's a case of improving the aesthetics of an object. Said object
may work perfectly, but offend the sensibilities when the code is viewed. The
aesthetics of code are important – they are usually a hint as to where
refactoring can profitably be applied. Complex, unwieldy, and ungainly coding
structures are usually there to handle complex logic operations that could
potentially be either extracted or remodelled. However, you shouldn't
automatically think 'complex code is bad code', especially if the cold is old.
Some code isn't ugly, it's battle-scarred – it's been thumped to bits by
countless rounds of testing, and then patched up and fixed and put back into
the field. Recognising the difference between ugly code and battle-scarred
code gets easier with practise.

Some Common Refactoring Tasks
There are several common tasks that are done to refactor objects. Some of
these are structural, relating to the way in which objects are connected to
other objects:

•Generalising object functionality.
•Specialising object functionality.
•Improving encapsulation.
•Lowering impact of change

Some of these are related to the code inside objects:

•Simplifying internal structures.
•Improving variable names.
•Simplifying logical comparisons
•Substituting one algorithm for another
•Consolidating conditionals
•Extracting functionality into separate methods.
•Reducing inconsistency in naming and parameter ordering

Martin Fowler (http://www.refactoring.com/catalog/index.html) has a list of
common refactoring tasks. Not all apply to Discworld, but you can get a taste
of what refactoring is all about.

Michael Heron Page 38

http://www.refactoring.com/catalog/index.html)

Working With Others, First Edition

Conclusion
This chapter isn't a technical resource about refactoring, but the outline of a
philosophy for refactoring that can reduce tension amongst your colleagues.
Refactoring is an important and on-going process, one that you will
undoubtedly get involved with at one point or another. Its role in this material
is to outline a set of criteria by which you should refactor – a 'manifesto of
courtesy' for how to make sure you don't inconvenience everyone with your
changes.

Michael Heron Page 39

Working With Others, First Edition

Coding Etiquitte

Introduction
Formal codes of etiquette exist to smooth relationships between people by
establishing boundaries of acceptable behaviour. So it is in coding within a
multi-developer environment – there is an etiquette that works to reduce
friction. As far as I am aware, no-one has actually formalised this before, so
this is my own clumsy attempt to do for coding what Emily Post did for the
1920s.
It's very easy to step on toes as a developer, and having a little consideration
for your colleagues is the best way to show the necessary respect for their
time and effort. I don't think there's a lot of value in having an exhaustive
encyclopedia of such rules, so I have concentrated only on those of real
importance to the process.

Before You Write Any Code
The first steps you take to ensure you are being polite are taken before you
write any code at all.

Check for Duplication of Effort
To begin with, look to see if there has been any duplication of effort. One easy
way to cause Conflict is to say 'Hey, I'm coding this cool thing here', when
someone else is already coding that cool thing elsewhere. Additionally, check
to see if there's any abandoned work that has been done in the past on similar
developments. Sometimes projects stop simply because people don't have
enough time, rather than because they weren't working out. A rescue and
adaptation of old code can be as valuable and efficient as writing the code
from scratch.

Michael Heron Page 40

Working With Others, First Edition

Make Sure All Involved Parties Are Consulted
An easy way to rub people up the wrong way (and to run the risk of your
project being mothballed) is to not consult the people who need to be
consulted. You can't just say to yourself 'I'm going to write a guild-house for
wizards in my development', because the placement of guild-houses has
strategic importance for the Guilds domain. Similarly, if you're writing an
island of some kind, it has importance for the Waterways domain; and if you're
writing a complex and potentially generalisable subsystem for your area, then
the Special domain may be interested.
Making sure that the relevant parties in those domains are consulted before
you start coding is the easiest way to avoid potential future conflict – it's
hardly ever the case that you're told 'No, you can't do anything like that', but
there may be conditions, or modifications that are necessary, or perhaps a
recasting to fit in line with future domain objectives.

Ensure A Migration Strategy
If you're remodelling code that's already in the game, or code that's likely to
impact on other developers (such as a change to inherits or handlers), then
make sure you plan in advance to make the change with the smallest possible
'interruption of service'. Make sure everyone knows, ahead of time, what's
going to happen and what that means for their own code. Do it first, because
it'll already be too late if someone points out a problem with your migration
strategy after you have made the changes.

When You Are Writing Code
The biggest area for potential conflict is in the code you actually write – all
code on Discworld is very tightly interconnected, and you can easily cause
problems for other developers if you write code without care.

Be Wary Of The Impact of Change
As per our discussions on the impact of change, you need to bear this in mind
when you are changing code. If it's going to change the way the code
functions, don't do it unless you've gotten people on board and given warning.
The higher the impact of code, the greater your consultation with others
should be. Seriously, don't be a dick – don't just break other people's code
because it's convenient for you to do so.

Write Your Code Cleanly
There exists, at least in my mind, a bell curve that describes the simplicity of
the code written by developers. I call it the Obfuscation Curve:

Michael Heron Page 41

Working With Others, First Edition

Newbie developers write simple code because it's all they know how to do.
However, as the years go by, they accumulate knowledge of new tools,
techniques, and syntax. They then fall into the incredibly common trap of
thinking that a good developer is defined by the number of tricks they know.
These tricks then tend to make their way into every piece of development, just
to show how 'clever' the coder is. Additionally, developers at the midpoint of
experience tend to associate complexity with quality – if the code is clever and
does what it is supposed to do in a highly efficient (albeit inscrutable) way,
then it must, by definition, be good code.
This couldn't be further from the truth.
There is some merit to the idea that good code can be an intellectual exercise
– doing things in new and unusual ways is personally satisfying after all.
However, in a multi-developer environment you are actively retarding
development by making every developer who follows you puzzle out the logic
of your code. Your lapse into egotism is a burden to all. I don't care what you
do with your solo development projects, but when you're working with others,
don't do it.
As developers gain further experience, especially after working with other
people, they start to return to the idea of clean, simple code. It's much more
maintainable, much more readable, and the minor efficiency losses are more
than compensated by the ease with which fellow developers can add features
or address problems.
Really beautiful code, and there are some lovely examples of this, is elegant.
Elegance demands simplicity of expression. The developers with the best Code
Fu write elegant code, not complicated code.
As a counterpoint to this, I don't mean to say that you need to write code that
even the newest creator can understand. You can make available to yourself
the full vocabulary of the programming language – when I talk of readability, I
mean readability to a fellow developer of reasonable literacy with the
language.
For example, the following code is needlessly obfuscated:

Michael Heron Page 42

Working With Others, First Edition

if((check = ::move(dest, messin, messout)) != MOVE_OK)
 return check;

You can follow what it does, but it doesn't need to do it so awkwardly. There's
nothing lost by being explicit in the code:

check = ::move (dest, messin, messout);

if (check != MOVE_OK) {
 return check;
}

You lose nothing, and you gain readability in exchange.
To show that I'm not simply having a go at other people here, I'll include an
example from my own code:

tot = map (filter (property_list, (: member_array ($1->street_name,
 $(monopoly_sets)[$(m)]) != -1 :)), (: $1->houses :));

Sure, it's nice Code-Fu, but it was written eight years ago when I too confused
complexity for cleverness. But I bet it would take you quite some time to work
out exactly what this line of code is supposed to be doing. I'll give you a hint,
though, it's doing something quite simple.

Document Extensively
Good code is its own documentation. I am in no way a proponent of
'commenting metrics', whereby X lines of code must have Y lines of comments.
As long as you pick meaningful variable names and don't over-complicate it,
you'll find that your code is readable enough. Everyone has a different opinion
about readability, though. I've occasionally found that someone's gone to the
trouble of commenting code that I was too lazy to comment myself. They have
my thanks for this!
However, whenever you're doing something a little bit exotic, you should
outline what your intentions were within the code. Don't describe what the
code does, describe why it does it. The following would be a bad comment:

// Does a map on the filtered property_list array. The filter filters
// the array for all those streets that are part of the value $m in
/ the monopoly_sets mapping.
// It returns the houses member of the class in array format.

tot = map (filter (property_list, (: member_array ($1->street_name,
 $(monopoly_sets)[$(m)]) != -1 :)), (: $1->houses :));

Michael Heron Page 43

Working With Others, First Edition

That explains what the code does, not what the intention of the code is. You
can't tell from that comment whether the end result is what the code would
suggest. A better comment would be this:

// This piece of horrible code gives an array of all the houses a player
// has in the properties that belongs to a set.

That explains what the code was supposed to do, so that a developer can look
at the end result and decide whether or not that's what happens. Comments
should explain intention, not simply dissect the code.

Attribute Contributions
Coding is a collaborative effort, and much successful coding is simply well-
targeted plagiarism. That's absolutely fine – if someone has already solved the
problem you are having with a bit of their own code, then use that code as a
template for your own. However, when you do this, it's very nice if you can
provide an attribution, such as:

// This code borrowed from Drakkos' Killer Weasels

Attributing the work of those who have gone before you is a respectful activity
– it doesn't take away from you as a coder, it enhances your reputation in the
eyes of other people. Moreover, it makes it easier for people to maintain the
MUD - if I know that you based a piece of code on a function in
/d/waterways/stupid_thing, then I know that if I fix your code I may also have
to fix it there.

Michael Heron Page 44

Working With Others, First Edition

When You Have Written Code
Once you have written code, there are a few more things that fall under the
general criteria of politeness.

Abdicate Ownership
Once the code is written, you should mentally hand it over to the domain. It's
no longer your code – it's production code, belonging to everyone. It's a
mental activity, so you don't need to actually do anything for this... but if you
get wound up or upset by someone else changing something in your code,
then you're doing it wrong. Complaining that someone else 'changed your
code' is rather rude in an environment where everyone else is being a team
player with the code they provide.

Be Willing To Maintain
Even though you abdicate ownership of the code, you are still the person best
qualified to maintain it. As far as possible, you should keep an eye on reported
problems with your developments and be prepared to fix them, especially if
they flummox other creators. Although you aren't the owner of the code, you
are the expert on it.

Make Sure All Parties Have Adequate Information
There's little worse from a 'creator satisfaction' perspective than those with a
need to know not being told what they, well, need to know. Need to know
parties will vary from project to project, but if it's an area going into the game
then the liaison domain need to know as much as you can tell them about
features that may potentially go wrong. If it's a cross-domain collaboration,
then all the collaborating domain administration teams need to know the
details.
A post on the liaison board is the usual mechanism for announcing a new
feature for the game, but a mail to the relevant parties ahead of time also
shows the appropriate amount of respect for your collaboration partners.
Something like, 'Hey, we're going to make this live next week, so let us know
if you have any last-minute comments' is a great way to make sure everyone
gets a chance to have a last look over the development before everyone is
committed.

Michael Heron Page 45

Working With Others, First Edition

Conclusion
There aren't all that many rules you need to worry about – and most of them
are fairly self-explanatory. They all stem from a single basic concept though –
don't make life harder for people than you actually have to. Working with
other people means being able to compromise and communicate clearly. It's
much easier when everyone has a firm idea as to what is acceptable and what
is not when making development decisions.
Some of us are better (or worse) than others at being polite and respectful
developers. It is not unknown for a developer to wake up one morning to find
that everything they have written has been broken because someone else
'fixed' a low level inherit. Such occasions are rare, but there are precedents.
Simply bear this in mind – how would you feel if you logged on one morning
and everything you had written had to be changed, without any warning or
consultation? You'd be legitimately pissed off. If it would bother you, don't do
it to other people.

Michael Heron Page 46

Working With Others, First Edition

Source Control

Introduction
One of the most useful systems we have in place on the MUD is our source
control system. The MUD uses a system called RCS – the Revision Control
System – to ensure that multi-developer collaboration proceeds as smoothly as
it can. It is a system for restricting the access to make code changes so that
only one developer modifies a file at a time. This neatly gets around the
problem of one developer overwriting the changes of another developer –
something that, with the best of all intentions, is quite common when no
formal system exists to prevent it.

Source Control In The Abstract
Imagine you are a Discworld developer. That should be quite easy, because
presumably you are! You are working with a file, /d/forn/awesome.c. You
download a copy of this to your local machine, and make some changes. While
you are doing this, unaware of the fact you are working with the file, I come
along and download it to my local machine and start making changes. You
finish up, and upload the file to the MUD. I finish up, and then upload my file
to the MUD. Despite the fact we both made changes, my version overwrites
yours.
There are ways to minimise the chances of this – for example, like so:

(forn) Drakkos: Hey, I'm about to do something with /d/forn/awesome.c (forn)
AnotherCreator: Can you hold off a bit, I'm currently working with it.
(forn) Drakkos: Sure!

This is imperfect though – it doesn't catch anyone who is offline and working
through FTP, and it doesn't catch anyone who isn't reading the channels.
Communication can go some way towards making sure problems like this
don't occur, but it doesn't solve the root issue.
Source control steps in and provides the solution to this problem. All files on
the MUD can be placed into source control (this has to be done manually,
because sometimes it's inconvenient), and once they have been registered
with the system it becomes impossible for anyone to make changes unless
they first 'check out' the file.

Michael Heron Page 47

Working With Others, First Edition

Only one person at a time can check out a file, which means that if you are
working with awesome.c, I will get an error message if I try to make any
changes. When you're done, you 'check in' the file and provide a little
description of what you did. At that point, your changes are said to have been
'committed'.
Part of the beauty of a system like this is it keeps track of the differences
between the new version and all previous versions, and with a single
command a developer can revert the file back to a previous version. If your
changes to awesome.c introduced some horrible, game destroying error...
well, we just 'revert' the file back to its previous version and no harm, and no
foul.
It really is a wonderful system. In our example of you and I working with the
same file, no-one has done anything wrong. It's not a sign of bad
communication or a dysfunctional environment – it's just One Of Those Things.
While it's almost never a good idea to apply a technological solution to a social
problem, what we're describing here is a technological solution to a
technological problem.
Like any system though, it's only as good as the people using it. We'll talk
about some of the social problems with RCS later in this chapter.

The Discworld RCS System
If you are the sole developer working on a project that is not in the game, you
may find it easier to keep everything off of RCS while you work. It can be
inconvenient to continually have to check files in and out of the system, and
somewhat against the spirit of the thing to check them out and never check
them back in until the development is completed. When the code goes live, or
into playtesting, you should – without exception – add the files to the RCS
system. Luckily, it's very simple to do – you use the rcscreate command:

rcscreate /d/learning/learnville/chapter_02/rooms/*.c

You'll be prompted to enter some text – as a matter of convention, this text is
usually 'Initial Revision'. Once you've entered the text, that's it – your files are
now on the system and you won't be able to make any changes until you first
check them out. That's done using the rcsout command:

rcsout /d/learning/learnville/chapter_02/rooms/street_01.c
d/learning/learnville/chapter_02/rooms/RCS/street_01.c,v -->
d/learning/learnville/chapter_02/rooms/street_01.c
revision 1.1 (locked)

Now you have access to change the file, and nobody else does. When you've
made your changes, you use the rcsin command:

Michael Heron Page 48

Working With Others, First Edition

rcsin /d/learning/learnville/chapter_02/rooms/street_01.c

When you do this, you'll be prompted to enter some text. Please provide
something useful and meaningful for this, because it's what people will see
when they look at the log of changes that have been made. You shouldn't
detail the code you changed – that's available already (more on this later).
Instead, your comment should focus on intention and what the change was
supposed to achieve. If you haven't actually made any changes to the file, it
will automatically revert to the last version:

d/learning/learnville/chapter_02/rooms/RCS/street_01.c,v <--
d/learning/learnville/chapter_02/rooms/street_01.c
file is unchanged; reverting to previous revision 1.1

If, after having checked out a file, you decide that you don't actually want to
make any changes, or if you've made changes and they're not what you want,
you can release your lock on the file using rcsrelease. This will release your
claim to the file without committing any of your changes. It'll revert
automatically to the most current version of the file:

> rcsrelease /d/learning/learnville/chapter_02/rooms/street_01.c
d/learning/learnville/chapter_02/rooms/RCS/street_01.c,v -->
d/learning/learnville/chapter_02/rooms/street_01.c
revision 1.1 (unlocked)

If you want to see what files you have locked out, the mylocks command is
your friend:

Michael Heron Page 49

Working With Others, First Edition

> mylocks
You have the following files locked:

/d/learning/master.c
/d/waterways/handlers/docks_handler.c
/d/waterways/handlers/ship_ownership.c
/d/waterways/inherits/mooring_area.c
/d/waterways/inherits/pier_inherit.c
/d/waterways/inherits/ship/helm.c
/d/waterways/inherits/ship/hold.c
/d/waterways/inherits/ship/outside_ship_room.c
/d/waterways/inherits/ship_object.c
/d/waterways/ships/inherits/ship_rooms/base_inherit.c
/d/waterways/ships/inherits/ship_rooms/inside_ship_room.c
/d/waterways/ships/inherits/ship_rooms/player_ship_room.c
/d/waterways/ships/types/sloop/rooms/bridge.c
/d/waterways/ships/types/sloop/rooms/cabin.c
/d/waterways/ships/types/sloop/rooms/nest.c
/d/waterways/ships/types/sloop/rooms/plank.c
/d/waterways/ships/types/sloop/rooms/weapons.c
/include/learning.h
/include/waterways.h
/obj/handlers/oracle.c
/w/drakkos/public_html/secure/project.c
/www/external/includes/discworld.js
/www/external/includes/discworldv.js
/www/header.c
/www/secure/creator/oracle/oracle.c

Whoops, I should probably check some of those back in! You can also check to
see which files another creator has locked out with mylocks:

> mylocks gruper
Gruper has the following files locked:

/d/waterways/islands/pirates_cove/cove/beach.c
/d/waterways/ships/inherits/ship_functions/oars.c

Damn him, always making me look bad by virtue of his professionalism!
If you want to see who has a lock on a particular file, that's what the rcslocks
command does:

> rcslocks /d/learning/master.c File /d/learning/master.c locked by
drakkos.

Finally, if you want to see the changes that have been made to a file, the
rcslog command gives you all that information:

Michael Heron Page 50

Working With Others, First Edition

> rcslog /d/learning/master.c
RCS file: d/learning/RCS/master.c,v
Working file: d/learning/master.c
head: 1.5
branch:
locks: strict
 drakkos: 1.5
access list:
symbolic names:
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:

revision 1.5 locked by: drakkos;
date: 2008/10/05 20:06:51; author: drakkos; state: Exp; lines: +88 -2
Changed way the domain info is displayed, and the order in which domain
creators are shown.

revision 1.4
date: 2008/10/02 19:14:33; author: taffyd; state: Exp; lines: +1 -1
Forcibly unlocked by drakkos

...

We'll spend a little bit of time talking about these entries, because there's a lot
of information in there. Let's take the last of these as an example:

revision 1.5 locked by: drakkos;
date: 2008/10/05 20:06:51; author: drakkos; state: Exp; lines: +88 -2
Changed way the domain info is displayed, and the order in which domain
creators are shown.

The first piece of information we are given is the revision number of the file.
Each time a change is committed, the decimal part of the version increase by
one. This follows a general convention of software updates... it's possible for a
revision to increase the whole number part, but nobody ever does it... indeed,
the only piece of code for which I know it has been done is the taskmaster – it
was updated to version two when the degree of success (critical success and
critical failure) code was introduced.
The date is when this change was committed, not when the change was made.
As such, there can be wide disagreement with the 'official record'... sometimes
files remain locked out for weeks or months, and so the date of a revision
bears no relationship to when the changes were made.
The author is the person who committed the change. The state tag is not
something we use much on Discworld, or indeed use at all. It relates to the
state of the release – EXP stands for 'experimental'. The state can be anything,
although the convention for other states is STAB (for stable) and REL for
release. You'll be unlikely to encounter anything other than EXP though as you
work your way through the Discworld codebase.

Michael Heron Page 51

Working With Others, First Edition

Lines indicates the net number of lines that were added (defined as any line
that was changed) and lines that were removed (defined as any life that is no
longer in the code).
The most important bit of all of this though is the text that accompanies the
entry – this is the text that the creator entered as part of the rcsin. If good
practise is being followed, this will be a meaningful description of the change
that was made.
The final command you're likely to make use of is rcsdiff – this gives you the
exact difference between two version of a file, showing exactly what was
added and what was removed. If I wanted to know what changes were made
between version 1.4 and version 1.5 of a file, it's this command I use:

> rcsdiff -r1.4 -r1.3 /d/learning/common.c

This will give the following output:

< int do_sit(string command, object *indir, string dir_match,
< string indir_match, mixed *args, string pattern); 32c30
< "sit", ({ (: do_sit :), "[in] <direct:object>" }) ---
> "sit", ({ this_object(), "do_sit", "[in] <direct:object>" }) 37c35
< "sit", ({ (: do_sit :), "[in] <direct:object>" }) ---
> "sit", ({ this_object(), "do_sit", "[in] <direct:object>" })

It can be slightly difficult to read this output. Lines marked with a < are lines
that have been added, and lines marked with a > are lines that have been
removed. In essence, the following two lines:

> "sit", ({ this_object(), "do_sit", "[in] <direct:object>" })
> "sit", ({ this_object(), "do_sit", "[in] <direct:object>" })

Were replaced with the following:

< "sit", ({ (: do_sit :), "[in] <direct:object>" })
< "sit", ({ (: do_sit :), "[in] <direct:object>" })

There are more commands available as part of the RCS system, but these are
the commands you'll be working with most often. The help-file for RCS will
outline some more interesting and useful options.

Michael Heron Page 52

Working With Others, First Edition

Problems
There are, as usual, social problems that come along with any system. While
our use of RCS is on the whole very good, there are lapses – usually centred
around specific individuals. Alas, I count myself amongst these – senility has
grabbed hold of me in my old age, and I thus often forget I have files locked
out. And then, when I check them back in, I forget what it is I have done.
Usually this is a result of carelessness rather than malice – files remain locked
out for as long as it takes for someone to realise (for example, another person
who needs access to the file). However, there is a more insidious problem of
people pre-emptively checking out code so that other people can't change
'their code'. This, as we have discussed, is not a mindset we like to encourage.
The rcslog of a file is a historical record – it shows what changes were made,
along with a short summary. However, this record can be constantly
interrupted with 'noise' such as files being forced (this is when someone
forcibly checks in a file for you – this is something available only to senior
creators and above), or less than helpful rcs entry messages. For example,
from /d/forn/master.c:

revision 1.5
date: 2003/06/07 18:33:53; author: drakkos; state: Exp; lines: +599 -591
Forcibly released due to inactivity

revision 1.4
date: 2001/11/16 21:35:46; author: drakkos; state: Exp; lines: +590 -596
Buggered if I know.

revision 1.3
date: 2001/05/26 16:57:53; author: terano; state: Exp; lines: +596 -600
Fixed a thing.

revision 1.2
date: 2001/05/26 16:49:56; author: drakkos; state: Exp; lines: +600 -476
Fixed up a few things. Changed a few more. Added some very crude metrics.

None of these are useful messages, especially considering how many lines of
code have been marked as changed. This is a problem with the people using
the system, not the system itself.
Source control is not a substitute for a good developer environment – it stops
accidental collisions of code, but it won't help with genuine social problems
between developers.
Note too that once a file has been put on RCS, it can't be removed except by a
Trustee. That means no shuffling files around, or deleting them permanently.
You need to be sure that you can commit to what's there unless you want to
risk the wrath of waking a Trustee from their blissful slumbers.

Michael Heron Page 53

Working With Others, First Edition

Conclusion
Source control is one of the most important systems we have for supporting
our development work. It means we don't need to keep backups, or tediously
roll back changes by hand. It means we can track changes made to objects,
and identify people who were responsible for making changes. All of this in
addition to its core function of making sure that we don't end up killing each
other over code collisions. Learn to love it!

Michael Heron Page 54

Working With Others, First Edition

Documentation

Introduction
Writing documentation is one of the least enjoyable tasks that comes along
with developing code. As such, it tends to be something that's left until the
last minute, or done in infrequent, unreliable pushes of effort. It's a shame it is
so tedious to produce because good documentation is worth its weight in gold
for those who come after you.
When it comes to documentation, I don't necessarily mean commenting. I am
not a proponent of the view that comments should form X% of your source
code (although many people are) because I believe that good code is its own
documentation. In addition to comments that describe what code is supposed
to do, Discworld has a commenting format that allows for automatic extraction
and indexing of object functions, their return values, and their parameter lists.
In this chapter we will also talk about the format used by the MUD's help-files,
and how you can aid in our documentation effort by migrating user help into
bespoke object help-files.

Commenting
The usual argument is, 'It is good practise to comment your code'. In my
experience, when this argument is followed to its logical conclusion it actually
detracts from readability. Imagine the following code (and this is not an
exaggeration, I have seen files like this by the dozen):

// This declares an integer variable called num.
int num;
// This declares a string variable called name.
string name;
// Create a for loop with a counter variable called i.
// It will loop while i is less the num.
for (int i = 0; i < num; i++) {
 // Send the text that is in the variable name to
 // this_player(), using the tell_object() method.
 tell_object (this_player(), name + "\n");
}

Michael Heron Page 55

Working With Others, First Edition

The problem with these comments is that they are aimed at the wrong
audience. You shouldn't write comments so that your grandmother, or your
mother, or your best friend can understand what is going on. You should write
comments so that a fellow literate programmer can know what is going on.
These comments do not say anything that the code itself doesn't say. The code
itself gets swamped in the comments, making it a little less readable. Nothing
is gained from this, even though everything has been commented.
Good code is its own documentation. The following is bad code:

m=i+((r*i)-d);

While you can work out what this is doing, there is no hint as to why one
variable is being modified by another in a particular way. On the other hand,
simply choosing meaningful variable name turns that into self documenting
code:

my_money = income + ((reserves * interest_rate) - debits);

In this code it is obvious what is happening – there's no need to comment this.
You'd certainly need to comment the former.
Sometimes though, even with meaningful variable names, you're going to end
up doing something a little bit esoteric. Whenever you feel that it is unlikely
that a fellow literate programmer will be able to tell, at a glance, what you
were trying to do – that's the time to add a comment. This gives a happy
balance between enhancing readability and not restricting you from coding
productively.
However, even assuming complete comprehension of what each individual line
of code is doing, it is hard to tell, 'at a glance' what the big picture is. That's
where the system documentation comes in – we provide documentation on
each of our functions so people can tell what they put in, what comes out, and
what the value that comes out will mean.

Commenting Good Practice
One of the biggest problems with large bodies of commenting is the difficulty
in keeping it up to date. What tends to happen is that the code gets changed
and the accompanying comment doesn't get updated. Before too long, the
comments bear little relation to the functionality and become actively
unhelpful. That's why it's important to document the intention, not the actual
steps taken.

Michael Heron Page 56

Working With Others, First Edition

You should also try to document 'why' along with 'what' – why did you decide
to do something one way over another? Any time you had to spend a bit of
time puzzling over alternatives, you can save those who follow you the effort
by saying 'I decided to do it this way because it's more
efficient/maintainable/readable than the other way'.
If you are making any assumptions at all in your code, then for the love of god
document those assumptions. If the entirety of your function assumes that a
particular parameter is within a certain range, make sure that information is
documented somewhere other than in your head. Of course, if you are going
to rely on such things you should have a guard condition in the code ensuring
that the function won't be executed if the parameters are invalid. Still,
document the assumptions you make.
Avoid being humorous in comments if it comes at the expense of clarity. Don't
use code words, or in-jokes, or obscure references, no matter how widely
understood you believe the reference to be:

// This fubars the string.
string do_fubar(string str) {
}

Finally, don't comment out obsolete functionality – delete it entirely. The
revision control system means that the functionality is available should it be
required (oh – make sure the file is on RCS first!), and removing it entirely
from the code greatly increases clarity.

Autodoc
Discworld has a commenting convention based on the Javadoc standard. It's
called Autodoc, and it integrates documentation for functions into the
standard help system. Imagine you wanted to know what query_area in
/obj/handlers/armoury.c does – you can find out by typing 'help query_area',
and you'll get a little help-file discussing it:

Michael Heron Page 57

Working With Others, First Edition

query_area Discworld creator help query_area

Name
 query_area - Returns the list of domain armoury items.

Syntax
 mapping query_area(string domain)

Parameters
domain - the domain/area to get the items from.

Returns
the area sub-mapping.

Defined in
/obj/handlers/armoury.c

Description
Returns the list of domain armoury items.

That help-file is generated automatically from the comments that have been
put before the function in the file. As long as the comments adhere to a
particular syntax, they can be parsed and made available to everyone. You are
unlikely to ever need to do this for rooms, NPC and specific items – but if
you're doing anything more substantial, it's very useful if you can provide
autodoc commenting.
An autodoc comment starts with a special code: /**
Every line that follows begins with a star in line with the first of the asterisks,
and it ends with the normal closing of a block comment: */.

/**
 *
 *
 */

The first line of text is what is used for the summary that follows the name of
the function. The rest of the text is used for the description of the function.
You can mark this up with normal HTML, so you can add in paragraphs and
line-breaks as necessary.
The syntax of the function is extracted automatically by the autodoc handler,
as is where it is defined. The rest of the information we need to provide, and
we do this using autodoc tags. These begin with a @ symbol, and are
interpreted by the autodoc handler according to the text that belongs to the
tag.
For example, let's take a simple function from /d/learning/master.c and put it
through the autodoc format. The function is this:

Michael Heron Page 58

Working With Others, First Edition

int set_project(string name, string pro) {
 if (geteuid(this_player(1)) != query_lord())
 return 0;
 return ::set_project(name, pro);
}

Its task is simple – it checks to see if the person making use of the function is
the lord of the domain. If they aren't, it returns 0 and does nothing. If they
are, it passes responsibility onto the object that this object inherits.
First, let's describe that in an autodoc:

/**
 * This function sets the project of a domain member. It first checks to
 * see if the person making the call to the function is the lord of the
 * domain. If they are not, it will return 0 indicating failure. The
 * method will make a call to the set_project of /std/dom/base_master.c
 * if this initial check is passed.
 *
 */

Next, we add in tags to provide an explanation of what the parameters and
return value mean. We have to be careful with formatting here – there should
be one space between the asterisk and the tag, or it won't be picked up by the
handler. @param is used to give a meaningful description to a parameter, and
@return is used to describe how the return value should be interpreted.

*
* @param name The name of the person for which we want to change the project.
* @param pro The project the person is to have in the domain.
* @return 1 if the project is successfully changed, 0 if it is not.
*

There are some other valuable tags we can provide:

Tag Description
@see Adds a reference for other objects of interest. You can use

this to direct attention towards related objects.
@example You can use this to provide a code example of the object in

use.
@ignore Makes it so the autodoc handler ignores the function for the

purpose of automatic generation. This is useful if it's a small,
private function that no-one need worry their pretty little
heads about

Michael Heron Page 59

Working With Others, First Edition

We should definitely add in one of each of the first two;

* @see /std/dom/base_master.c
* @example
* ret = set_project ("drakkos", "Being Awesome");

This would give us our full autodoc comment:

/**
 * This function sets the project of a domain member. It first checks to
 * see if the person making the call to the function is the lord of the
 * domain. If they are not, it will return 0 indicating failure. The
 * method will make a call to the set_project of /std/dom/base_master.c
 * if this initial check is passed.
 *
 * @param name The name of the person for which we want to change the
 * project.
 * @param pro The project the person is to have in the domain.
 * @return 1 if the project is successfully changed, 0 if it is not.
 * @see /std/dom/base_master.c
 * @example
 * ret = set_project ("drakkos", "Being Awesome");
 */

This will generate the following help-file for help set_project:

Michael Heron Page 60

Working With Others, First Edition

set_project Discworld creator help set_project

Name
set_project - This function sets the project of a domain member.

Syntax
int set_project(string name, string pro)

Parameters
name - The name of the person for which we want to change

the project.
pro - The project the person is to have in the domain.

Returns

1 if the project is successfully changed, 0 if it is not.

Defined in
/d/learning/master.c

Description
This function sets the project of a domain member. It first checks
to see if the person making the call to the function is the lord of
the domain. If they are not, it will return 0 indicating
failure. The method will make a call to the set_project of
/std/dom/base_master.c if this initial check is passed.

Example 1
ret = set_project ("drakkos", "Being Awesome");

See also
/std/dom/base_master.c

Cor, don't that look purty?
As a matter for convention, you should also add such a comment at the top of
the file detailing, at the very least, who the author is and when it was started.
If you're working with a legacy file, then that might actually be known:

/**
 * Learning Domain Master Object
 * @author Who Knows
 * @started A Long Time Ago
 */

Still, it's better than nothing. Marginally, anyway.
Autodoc works for function level documentation. For commenting within a
function, standard commenting is all you need to use.

Michael Heron Page 61

Working With Others, First Edition

The Autodoc Process
Once you've written a file that you want to add to the autodoc system, you
have to add it using the autodocadd command:

autodocadd /d/learning/master.c

A second or so later, your file is in the system. However, it won't appear when
you try to get the help file. Help-files are updated on a delay to reduce load on
the system – it will be generated at some point in the not too distant future.
However, you can kickstart the process by using the autodoc command – this
will force the generation of the documentation:

autodoc /d/learning/master.c

This will create an overall view of the file in /doc/autodoc/. The filename will
be the same as the file path, except all the backslashes will be replaced with
dots. Thus, it's the file /doc/autodoc/d.learning.master.c.
Each of the functions that have been documented will be stored under
/doc/creator/autodoc/- everything in here is organised in a familiar file
hierarchy. The one for set_project will thus be found at
/doc/creator/autodoc/d/learning/master/set_project.
We can force these files to be added into the help system using the rehash
command on the directory:

rehash /doc/creator/autodoc/d/learning/master/

Your help-file will now be available in all its glory, to everyone who needs it.

Other Help-Files
Player help-files are written in a different format called nroff. This is a little
more esoteric, but fairly simple once you get the hang of it. It's good practise
to provide help for players for anything that may involve a game of 'guess the
syntax' – help-files can be attached to rooms, NPCs, or items using the
add_help_file function in the setup of the appropriate object. The following
help-file is taken from a story cabinet in a Genua pub:

Michael Heron Page 62

Working With Others, First Edition

.DT
Story cabinet
Discworld player help
Story cabinet
.SH Name
.SI 5
Story cabinet - Morality tales in the making
.EI
.SH
Syntax
.SI 5
push <lever> on <object>
pull <lever> on <object>
.EI
.SH Description
.SP 5 5
This is an old fashioned story cabinet... you can pull the lever on it and
it will tell you a story!
.EP
.SH Example
> push lever on cabinet
.SH
See also
.SP 5 5
None
.EP

The first special code here is .DT, and it means 'Do Title'. It will put the next
three lines into three columns in the normal standard of help files through the
MUD.
.SH indicates a section heading – this will appear in bold when the file is
viewed. Only the text that follows the code will be used for this.
.SI indicates the start of an indent – the number indicates the number of
spaces to indent. The indent will be in effect until it is cancelled with .EI (end
indent). .SP works similarly, except it indicates the start of a paragraph. The
first number is how far to indent from the left, and the second is how far to
indent from the right. Once again, this is in force until a corresponding .EP is
encountered.
At the end, you get this file out of it:

Michael Heron Page 63

Working With Others, First Edition

Story cabinet Discworld player help Story cabinet

Name
Story cabinet - Morality tales in the making

Syntax
push <lever> on <object>
pull <lever> on <object>

Description

This is an old fashioned story cabinet... you can pull the lever on
it and it will tell you a story!

Example

> push lever on cabinet

See also

None

You can use this basic template for any help-file you need to create – it's a
good habit to get into. It doesn't take long to add a help-file, and it adds
dramatically to the sense of satisfaction players get – there's no frustration in
trying to guess syntax, only playing with the cool new thing they have
encountered.

Why Document?
Sad as it is, you probably won't be here when the End of the Disc comes.
That's true of almost everyone – in the space of a few short years, absolutely
everything can change. People who seemed like part of the scenery become
merely part of your memory. What will go on though is the contribution you
made to the Disc. The only constant in life is change – the MUD is going to
change around your code, and if your contribution is to remain in the game
it's going to have to be written in such a way that it is possible for other to
maintain it after your departure.
There is a great saying that helps get the idea in your head – 'write your code
as if the person who maintains it after you is a homicidal maniac who knows
where you live'. Knowing that guy is going to have to deal with your code,
wouldn't it be nice if you could placate him with some calming, soothing,
useful comments?
Moreover, good documentation can serve as an aide-memoire for yourself –
when you write a lot of code, you're guaranteed to forget the older stuff. When
you come back and look an incomprehensible mess a year or so later, you'll be
in only a slightly better state than any creator coming to the code for the first
time unless your code is well documented.

Michael Heron Page 64

Working With Others, First Edition

Conclusion
Good code is its own documentation, I can't stress that enough. Commenting
done improperly is worse than no commenting at all – comments can be
unhelpful, misleading, or downright wrong. In the process they can drown out
the source code amidst a sea of green. However, when done properly, they are
immensely valuable to everyone who works with your code.
The Discworld Autodoc system is a powerful way of providing help for coding
functions in a consistent way – for small objects such as rooms and simple
NPCs, it's safe to ignore it. For anything that is going to be used more widely,
you need to be considerate of your fellow creators and thoughtful of the future
maintenance duties that go along with making a lasting, maintainable
contribution to the game.

Michael Heron Page 65

Working With Others, First Edition

Domain Integration

Introduction
Effective development on Discworld is a complex problem to solve. It involves
many different developers, with many different cultural backgrounds, with
varying degrees of expertise in software development, spread across many
time-zones. It's remarkable we ever get anything done, when you think about
it. As the MUD has grown more complex, it has introduced a whole new set of
issues that need to be resolved.
In this chapter we're going to talk about a process called Continuous
Integration, but we're not going to use it in the same way most software
developers mean. Most of what Continuous Integration involves are things we
don't actually need, or tools that make no sense in the context of Discworld
development. You can think of this then as a modified process for continuous
integration. We almost always do this anyway, but it's worth discussing why
this strategy is worth adopting when dealing with code files coming from
multiple sources.

Multiple Developers – the Traditional Approach
We've already spoken a bit about the cultural and technical barriers that come
with working with multiple developers. Once those have been resolved, the
problems don't go away – it just reveals the existence of new problems. The
comments I am going to make here don't necessarily apply to single developer
projects, but as soon as multiple developers start working on the same code
files, there comes a problem in terms of integrating this code together.
The traditional approach in software development works something like this:

•Everyone writes their code in isolation, over a period of time.
•At some point, the project leader says 'Right, let's put everything we've
written together to see it all work'
•Everyone pools their code, and links it all up.
•Hilarity Ensues
•Everyone spends the next week or so changing their code so that it all
actually meshes together properly.

Michael Heron Page 66

Working With Others, First Edition

The length of time between code integration events directly influences how
many errors will be experienced. Technically, these are known as integration
errors, and they come from various sources. The key source though is
assumption – everyone assumes everyone else is doing things a different way.
Often, the problems aren't as obvious as files not loading – the errors can be
much more subtle. You probably remember the 1999 Mars Lander probe that
went horribly wrong, costing NASA around $125 million. What you probably
don't know is that the reason was because of an integration error. One team
at NASA was writing their code using imperial measurements. Another was
writing using metric measurements. All of the internal error checking that
was done at NASA failed to pick it up because each part of the program was
actually working correctly. The problem came when the two pieces of code
were supposed to work together.
Partially this is a political problem – if everyone decides on a standard to
begin with and everyone sticks to it, the problem can be greatly mitigated.
However, in large part it's a simple consequence of multi-developer work.
People will make assumptions.
One of the reasons why this is a problem is in the observed behaviour – a
failing probe, for example. Another reason is the simple stress and hassle of
getting a project to work properly – it can take weeks to resolve integration
errors in a complex project (admittedly, the project for which this is true are
usually a good deal more complicated than the typical Discworld project) at a
time when tensions are already high (integration is not a relaxing process). It
can actually be bad for your health! It's certainly not fun, and that's what
we're all here for.
Discworld operates a 'reuse' mentality rather than a 'roll your own' mentality.
That's what all of our many inherits and handlers are for – to make it so
people don't need to reinvent the wheel. However, if someone in another
project is making use of your code, and it suddenly breaks because of an
integration error – well, the last place people tend to look for the problem is
outwith their own code. This is especially true if integration is an infrequent
event – the less frequently people integrate their code, the less likely people
are going to assume that an integration error caused their new, baffling
problems.
The problem breaks down to the length of time between attempts to integrate
– the longer people go without bringing all their code together, the longer
bugs and errors have to creep in.

Michael Heron Page 67

Working With Others, First Edition

Examples of this on Discworld
This may sound like an abstract problem with little relevance to Discworld,
but one particular domain development strategy shows it in clear focus. It
used to be the case for some domains that project code was developed in
your /w/ directory, and the /d/ directory was only for finished code. Imagine
that extended to the development of, for example, a whole city... in order for
anyone to actually walk around the city, every room has to connect to the
right directory in the right /w/ drive.
The code can't make use of the armoury because the armoury doesn't pick up
items in a /w/ drive. Everyone has to have workarounds and shoddy code just
to make sure the areas work (like cloning objects from a /w/ directory rather
than using the armoury). And then it's 'Integration Day', all the code gets
moved into /d/, and absolutely nothing works properly. Everyone then has to
spend the next week or so getting to the point where everyone thought they
already were. People have inherits they have written that would be of use to
others, but only their code is using it because nobody knew it was there. One
person has their move zone called 'Blah Zone' and the other has 'blah_zone'.
Another person thought the connection to Awesome Street from Fantastic
Avenue was a north/south exit, whereas everyone else was working under the
assumption it was east/west. Multiply these problems (and others) by the size
of the project and the number of creators, and you have yourself one massive
headache.
Solving the problems before they arise is always the best bet, but who can
solve the problems across a dozen /w/ directories? Very few people have
blanket write access to /w/, and while individual creators can grant permission
to their /w/ directories, it's a lot to co-ordinate. If you're having a problem with
your code and you need someone to help, they can only advise from the
sidelines – sometimes it helps if someone can just pop a few lines of code in
place to show a tricky concept in situ.
The problems of distributed and decentralized development get smaller with
fewer creators, but they don't go away. Any length of time between
integration events is going to cause integration issues.

Continuous Integration
Continuous Integration is how we solve this on Discworld, and indeed our
continuous integration is usually a good sight more continuous than 'real'
programming. The philosophy is simple – if the delay between integration
events causes problems then the solution is surely to simply remove the delay.
This is why large projects tend to work using 'live ammo'. When you get a
project, you're told which directory in /d/ your project resides, and often
there's already a skeleton in place so that people can actually walk around.

Michael Heron Page 68

Working With Others, First Edition

The benefits of this are considerable. It gives context so people know where
their code will fit into the larger arc of the domain. It ensures everyone is
working with the right tools – everyone uses the same inherits. It means that
the handlers we use for in-game code can be used for development code. It
also means that your project leader or domain administration don't need to go
hunting through your things to check something for an update, they just
wander to where the code is supposed to be.
For large projects (the development of Genua, the development of Bes
Pelargic, the redesign of AM and DJB), it is simply infeasible to do
development any other way. The projects are too large, and there are too
many creators working on them. Imagine the hassle if each creator had their
street in their /w/ directory!
There are a few problems that come with incorporating development code into
a /d/ directory though. For example:

•Bugs in development and PT areas tend to skew the error tracker figures.
•Unless there's something in place to stop it, the area is accessible to mis-
flights and mis-portals.
•NPCs in the area can be scryed or long-sighted.

These are all substantial issues, and a scheme is in place to resolve them.
Directories that are under development should contain, as part of their path,
the string _dev. For example, if you are working in
/d/waterways/awesome_project and you want it to be marked as a dev area,
you would change it to /d/waterways/awesome_project_dev. When it comes
time to put the area into playtesting, it becomes awesome_project_pt. When it
goes into the game, it becomes simply awesome_project. The code that is
likely to have to make a distinction between play and development areas all
have filename checks built into them. If you set a filename to have _pt in it,
this also helps regulate certain PT capabilities, such as when and where PT
protection may be switched on, and for how long.
There is a second advantage that comes from this naming system – it tests
your integration. Changing the name of a directory should be as simple as
changing a define in a path.h file, and everything should work flawlessly from
that. If it doesn't, then you found out earl. That's a good thing – it's important
you find this out before the code is due to go live! There are few things likely
to upset your domain leader more than them saying 'Area awesome is now
live!' and then finding out everyone needs to fix up the directories so they
don't break.

Michael Heron Page 69

Working With Others, First Edition

A Framework for Area Integration
This is a problem that normally comes from areas since they have the largest
number of discreet files and developers to go with them. As such, my
comments in this regard will centre around a framework for area integration.
When working with any project with a significant number of parts, it's
important to have a number of 'utility files' in place so that area-wide
behaviours can easily be implemented and changed. As a general rule – if
you're doing anything even remotely clever, try to break the functionality out
into an inherit. Even if nobody ends up using it but you, it'll make it easier to
fix bugs and add new features. We'll see that when we start developing
Betterville in LPC For Dummies 2.
A new area should come with an architecture that permits easy integration –
everything should be using the same inherits for rooms and NPCs – even if you
don't see a need for one, create an inherit for these and have everyone use it.
You'll be grateful for this when someone says 'Let's hook up this crime handler
I wrote' and you don't need to manually alter two or three hundred files to do
it.
I tend to break out new developments into five directories:

•rooms
•chars
•items
•handlers
•inherits

Everyone should be storing things in the same directories – a common
repository, rather than for the village of Awesome to have its own chars
subdirectory. If necessary, sub-directories under the base chars directory can
be added – it's just important everyone knows where to go and everyone is
adhering to the same standard. Where the directory is in your domain doesn't
really matter very much
The items directory however must be in the root of the domain – if your
domain is waterways, the items should be in /d/waterways/items/. This isn't a
knee-jerk mandate – the armoury looks specifically in that directory when
building its lists, and if you have your items elsewhere they won't be made
available. It's a functional necessity that it be a root domain directory. Again,
sub-directories within here can help manage the mass of items that are likely
to exist.

Michael Heron Page 70

Working With Others, First Edition

When they go live, things like clothes, weapons and armours are moved into
the relevant /obj/ subdirectory. It's my recommendation that this is not done
until the area enters the game. Comparatively few people have access to /obj/,
and it makes the task of debugging more difficult if access is not easily
forthcoming.
In your inherits directory, make a placeholder inherit for every type of room
that will exist – make one for shops, pubs, inside rooms, outside rooms, the
whole works. It allows you to control the entirety of your development with
only a few lines of code. Do you want to switch off XP gains while the area is
in PT? You just need to set that up in the base level NPC inherit, and it's true
throughout the entire area. Do you want to make it so nobody can portal? It's
a matter of seconds to add the property to every room across the entire
development. The convenience of changes like that cannot be over-estimated,
and that's without talking about how easily you can add complex base-level
functionality.
Handlers can remain empty, but if and when they are written this is where
they should live. Handlers have such wide-ranging impact that it's vital
everyone knows what they are, where they are, and what they do. They
shouldn't be hidden away in a subproject's sub-directories.
It's not so much the framework here that's important, it's the fact that
everyone knows where things should be. It greatly reduces confusion and
improves integration across an entire development, and that's extremely
important.

Conclusion
Developing in your /w/ drive may seem sensible, but it carries with it a penalty
in terms of ease of integration. When working with multiple developers on a
project, or even with multiple developers on a suite of related projects,
integration issues can easily surface and cause disproportionate amounts of
heartache.
It is my suggestion that you adopt a process of continuous integration by
incorporating your development into a large skeleton in the /d/ directory. This
gives improved integration, a sense of context, and makes it easier for people
to lend a hand with coding problems. The technical problems that come with
an area being in a 'live' directory can be resolved using the _dev and _pt
naming conventions. This has the added advantage of regulating the use of
playtester commands in a sensible way.

Michael Heron Page 71

Working With Others, First Edition

Group Dynamics

Introduction
You and the other members of your domain form a Team. A team with a
capital T! However, teams that don't have the right kind of dynamics tend to
be problematic and cause issues for other teams in the developer base. Your
domain should work well as a group, with everyone complementing everyone
else to produce a whole that is greater than any one individual is capable.
That only works if the internal dynamics of the group are such that individual
interacts enhance, rather than detract, the efforts of others.
At the same time, you are part of a larger Team – that of the creator-base as a
whole. There is sometimes a tension in your domain team versus the larger
context within which that team operates. It's easy for a team to be insular and
inward-looking rather than part of a larger, collaborative effort. In this
chapter we'll talk a little about the dynamics of domains, and where you
should be wary of treading.

What is a Domain?
Domains in Discworld have existed since the start of the MUD. Partially they
are an artifact of our top-down administrative structure, and partially they are
a way of decentralizing the responsibilities of development and focusing
people within a particular well-defined (or at least, hopefully well-defined)
remit. Perhaps the most important effect of a domain though is the impact it
has on creator cohesion - it allows the creators to form a productive group. A
group is formed when certain elements are in place:

•A shared sense of identity
•A shared purpose
•A conformity to some set standards or hierarchy
•Individuals have clearly defined goals.

All of these things are in place for a domain – the geographical (or abstract
conceptual) remit gives a sense of purpose for the members of the domain,
and the fact that everyone is working towards this gives a sense of shared
identity. Each individual has (or should have) a clearly defined goal – for most
creators, this will be their project. For others, the goal may be more nebulous,
but we'll talk about that.

Michael Heron Page 72

Working With Others, First Edition

Each domain has its own standards and hierarchy, and partially it is this
adherence to specific standards that defines a CWC creator from a Forn
creator from a Ram creator. Every domain handles thing slightly differently,
and those differences contribute to the sense of identify.
There are different kinds of groups that exist, some of which are healthy and
some of which are troublesome. We'll talk about those a little later.
Domains help us deal with problems that are otherwise intractable, as well as
distribute out effort to ensure that all parts of Mister Pratchett's world get
creator attention. It could be argued that they have outlived their usefulness,
but that view tends to focus on the problems that come along with domain
atrophy rather than the usefulness of domains as a mechanism for fostering
group interaction. When they work, they work very well.
Domains restrict the development focus to a subset of the Discworld. This
greatly increases cohesiveness of development because people only need to be
an expert in that subset. A ram creator doesn't need to be word-perfect on
CWC, and a creator for Forn does not need to know anything about Klatch.
There are several dozen Discworld books now, and nobody can be completely
conversant with the details of all of them. It's perfectly possible though to be a
'subject matter expert' in your own narrow field. The benefit of this is that the
development is richer – it can be full of deep detail born of knowledge rather
than superficial familiarity.
In addition to the benefit of managing development, groups provide several
highly useful social benefits. A good group provides a support network for its
members – everyone is part of the team and so it is to everyone's benefit if
particular individuals are supported. If you are having problems with
development or meeting your obligations as a creator, you will often find the
members of your own domain are your first stop for support.
One of the reasons for this comes from the previously mentioned shared sense
of purpose – this incentivises collaboration because a win for the team is a win
for everyone. If the domain has a significant success (such as a new project
being put into the game), everyone gets a little bit of that reflected glory.
In the overall development direction of the MUD, it's sometimes hard to feel
that your voice has any weight – within the confines of your domain, your
voice counts for much more because it's one of a smaller chorus. The exact
amount of influence your voice has will of course vary from domain to domain,
leader to leader and person to person – but there are fewer people who have
the authority to comment on the development of a single domain as opposed
to mud-wide development. Having a sense of common ownership over a
domain direction enhances the connections between group members.

Michael Heron Page 73

Working With Others, First Edition

None of this is to say that domains are All Good All The Time. The domain
structure carries with it a number of significant drawbacks, but these are
almost all related to domain atrophy – when a domain is no longer an active
part of MUD development. This can occur for a number of reasons, but the
most common of these is the disappearance of active leadership and a lack of
development momentum. Most of the benefits of a domain come from the
'buzz' of working within a group of people – if that buzz is not there, the
domain can be a millstone rather than an energy boost.
Individuals draw their sense of organizational norms from the people around
them – that's what people mean when they talk about organizational culture.
If the norm in your domain is an active culture of development, then that's the
lesson you'll take away. If the norm is for apathy and a lack of interest in
what's going on, then alas that's what you'll tend towards also. Breaking these
kinds of negative patterns isn't easy, but it's possible. We'll talk a little about
that later.

When Is A Group Not A Group?
All domains are groups, but there are also ways in which groups can be
subdivided. The simplest of these is to divide groups into either teams or
cliques. You can think of teams as 'groups done right' and cliques as 'groups
done wrong'. The difference really comes in terms of the inclusiveness of the
group – teams are inclusive and outward facing, and cliques are exclusive and
inward facing. Teams foster collaboration within a domain and also
integration into the larger community of the MUD. Cliques are hostile to
outside 'interference' and prone to organizational dysfunction as a
consequence.
As a matter of collegial courtesy, our MUD is far more open than most
development environments. Code is freely available, and the decisions taken
by individuals are open for discussion. This is a healthy, albeit challenging,
environment – you don't get the benefits of secrecy in how you deal with
things.
Teams embrace this kind of environment, whereas cliques withdraw from it.
The biggest differentiating factor of a clique is a sense of unity that members
are 'better than' other groups. The 'cool kids' at school are a common example
of the dysfunctional nature of a clique – individuals within the clique are
accorded higher status than those who are not within the clique. In order for
members of a clique to be 'better than', then everyone else must, by definition,
be 'worse than'. This attitude tends to manifest itself in bullying, or dismissive
behaviour towards outsiders.

Michael Heron Page 74

Working With Others, First Edition

In terms of integration within a larger MUD community, the inward nature of
a clique tends to make it overtly hostile to outsider commentary. This is
destructive to the fabric of collegiality that is at the core of Discworld
creating. First and foremost, the loyalty of a clique is to the clique. This loyalty
over-rides the wider responsibilities of membership within the creatorbase,
with all the attendant problems that brings. Often this loyalty is based on the
presence of an 'Alpha Member' attended by one or more lieutenants. This
lends itself towards a cult of loyalty in which pressure can be brought to bear
on clique members to ensure a consistent attitude amongst members towards
outsiders.
In the past, it was common for domains to have clubs for their members.
These were sensible and appropriate, and permitted easy interaction between
members in a way that was not obtrusive to the wider creatorbase – it's not
appropriate for one domain to fill up the creator channel with domain specific
chatter, for example, and difficult to co-ordinate a domain wide discussion
with tells. However, one side effect of this process was for domains to become
exclusionary – you became a member of the club through being a member of
the domain, and membership of this club was usually not permitted to others.
This engendered an often unintentional secrecy in domain development that
ultimately resulted in clique-like behaviour from even otherwise perfectly
functional domains.
That's why we now have creator channels for each domain – the ease of
communication between members is provided, but access to the channels is
an assumed right for all creators of senior rank and above, permitting a
greater degree of inclusiveness and transparency of decision making. Some
domains go even further than this and make the domain channel available to
all creators regardless of position (Learning being the obvious example of
this).
The question then is, 'how can I tell if I am a member of a team or a clique?'
It's hard to tell, from the inside – it requires a willingness to be rigorously
honest about your dealings with your fellow domain members. There are
though some questions you can ask that help clarify the situation:

•Does the bulk of domain conversation occur in an inclusive forum?
•Are your decision-making processes open for comment to the wider
creator-base?
•Are differences with other creators resolved constructively and in the
open?
•Is outside criticism taken as constructive and assessed for validity?

Michael Heron Page 75

Working With Others, First Edition

If the answer to any of these is 'no', then it is a warning sign that you may be
in a clique. These are the features of a team that enhance creator-wide
collaboration and inclusiveness. There are also features of a clique specifically
that highlight potential dysfunction. Ask yourself the following questions:

•Is there a tradition of loyalty to the group over loyalty to the MUD?
•Is there a tradition of covert sniping about professional disagreements
with outsider individuals?
•Is there an obviously dominant alpha member who distorts collegiality
with outsiders?
•Do significant portions of domain conversation occur in a private,
exclusive forum?
•Is there a tendency within your group to react aggressively towards
negative criticism?

Cliques share many of the features of constructive groups – they foster a
sense of community, shared purpose, and an incentive for collaboration.
However, for all the reasons above, they cause a distortion of the positive
atmosphere of open inclusiveness we try to foster across the MUD and create
an atmosphere in which group-think can thrive (more on group think later).
If you think your domain may be a clique rather than a team, the simplest
thing to do is just voice your concerns – the response that this gets will soon
tell you the truth of the matter! If you are part of a clique, my advice is that
you speak to an uninvolved director or admin as soon as possible and ask for
guidance and support. Feel free to come to me if you want to discuss your
worries on this score – I am, after all, a Professional Outsider!

Group Roles
Each individual within a group has a particular role. Sometimes this role is
highly defined, such as project or position in the administrative hierarchy.
Sometimes it's a more nebulous, social role. Sometimes people take on more
than one such role within a group. If everything is working effectively, you'll
find everyone has at least one positive role they are playing in terms of group
dynamics.
Some of the roles that tend to be highlighted by group dynamic theorists are:

•Encourager
•Gate-Keeper
•Harmoniser

Michael Heron Page 76

Working With Others, First Edition

•Mediator.

A good group has people who exemplify all of these roles.
The encourager is a cheerleader for the group, actively listening to ideas and
encouraging participation from all group members. An encourager can
motivate people on the fringes of a group to integrate more completely into
the team.
The gate-keepers are people with large stocks of bridging capital – they help
connect distributed subgroups within an organization. It's impossible in any
large group of people for everyone to form cohesive bonds with each other,
and gate-keepers allow for the lines of communication to be kept between
disparate and unrelated clusters.
Harmonisers work to reduce tensions in a domain. No matter how well a
group works, tensions will be encountered as a result of the friction of day to
day work. Harmonisers help resolve those tensions and smooth over problems
so everyone remains committed to the group goals. This has a great deal of
overlap with the role of the mediator, who can work to resolve tensions by
encouraging compromise.
However, in dysfunctional groups there exist particular 'anti-roles' that
actively disrupt the process of building good team dynamics. It's important
that people know what these anti-roles are, and identify individuals who
demonstrate those features. Knowing that a problem exists is the first step
towards resolving it.
Well known anti-roles include:

•Dominator
•Aggressors
•Deserter
•Recognition Seeker

The dominator is the person who feels as if they must monopolise every
discussion, to always be the one to make all the suggestions and to mould the
domain development strategy in the way that they intend. Group collaboration
works only when everyone's views can be heard.
Aggressors work to undermine alternative viewpoints by attacking them with
unwarranted aggression. Aggressors discourage participation by adding an
element of psychological trauma to putting forward an opinion. These two
anti-roles work together to produce an environment in which group-think can
thrive – coincidentally, these two anti-roles are most visible in groups that can
be defined as cliques.

Michael Heron Page 77

Working With Others, First Edition

Deserters are perhaps the most harmful of the anti-group roles. Deserters
simply withdraw from the process entirely, and coast on the effort of others.
This kind of behaviour is often referred to as 'social loafing' or 'free-riding', in
which the individuals rely on the relative anonymity that being party of a
group provides. When one is an individual working on a project, all the work
can be attributed to that individual. In a group, the work is distributed so it's
not so easy to identify who is pulling their weight and who is not. A social
loafer is one who takes advantage of this to gain the benefits of domain
membership without actually meeting their obligations to produce content.
Finally, there is the recognition-seeker. Groups work best over the long-term
if successes are shared amongst all members. The recognition-seeker subverts
this by insisting on individual recognition for their actions. Everything on
Discworld is a group effort, but the recognition seeker seeks to put their name
ahead of other contributions.
You will probably recognize examples of all of these from people you have
known and worked within the past. It's important in a successful group that
anti-roles are discouraged and positive-roles enhanced. Talk with your domain
administration whenever you feel someone is falling into a persistent anti-role
within your team.

Group-think
Group-think is a feature in many team-settings, and is a consequence of
individuals not being willing (or indeed being able) to put forward viewpoints
contrary to those of the group as a whole. Such behaviour is endemic in
cliques (because of the Top Dog mechanism) and in groups with large
numbers of aggressors and dominators. As a result of alternative viewpoints
not being put forward, a group reaches a premature consensus without
actually analyzing the ideas that have been put forward in a suitably critical
manner. The exclusionary nature of a clique also insulates it from external
viewpoints in a way that can create a sense of 'false invulnerability' because
competing viewpoints are simply not available.
It is wrong to think though that this is a feature only in groups with systemic
problems – sometimes it can come from a group simply having too many
people with the same kind of background – good collaboration comes from
having many people with different view points, not having many people with
the same viewpoint.

Michael Heron Page 78

Working With Others, First Edition

Groups that suffer from this tend to have an implicitly defined 'comfort zone'
in which discussions can take place – topics outwith the parameters of this
comfort zone are usually not expressed or considered in the decision making
process. Individuals do not wish to incur the wrath of an Alpha Member, or
risk looking foolish as they are attacked by an Aggressor – it's not the case
that the conclusion is foregone, but there is an element of self-censorship
applied by all members to the way in which they set the limits of their
expressed opinions. As a result of this, even though individual agreement with
a topic under consideration may be marginal, the overall impact of the social
processes of the group is to suggest an overwhelming mandate because
nobody has raised an alternative viewpoint.
There is some fascinating research by a social psychologist by the name of
Solomon Asch looking into conformity in group situations. The simplest
experiment he did was known as the 'line experiment, and worked like this:
The individual being observed was put into a group of between five and seven
'confederates' of the researcher. One by one, they were shown a card with a
line on it, and then another card with three lines marked A, B and C. The
participants were then asked to select which of these lines matched the length
of the first line they had seen. For the first few trials of this, everyone would
select the right card. In the next trial, the confederates of the researcher
would then pick the wrong card. Astonishingly 75% of the subjects in the
experiment conformed to what the group had selected at least once, even
though their choice was obviously wrong. The social pressures of group are so
intense that even in a group of strangers, there is conformity out of a a fear of
looking foolish.
However, one of the more encouraging things to come from the study was the
counterpoint that if at least one other person goes against the prevailing
group opinion, conformity rates plummet. The answer to group-think is to
stand your group and speak your mind – your alternative viewpoint could be
the thing that brings out all the alternative viewpoints in everyone else.

Conclusion
Groups foster a sense of cohesion and domains are a powerful way to harness
that cohesion for positive ends. However, the dynamics of groups are
complicated and prone to dysfunction unless everyone is aware of how easily
inclusive and effective teams can become insular and exclusive cliques. The
most important thing to do when you are part of a clique is to recognize it for
what it is and to make an attempt to break the dysfunctional elements. This
can be hard, because by their very nature cliques can exhibit tremendous
pressure on members. If you feel that you are not able to do so without
support, then talk to someone outside of the clique for guidance.

Michael Heron Page 79

Working With Others, First Edition

Some of this has a horrible air of 'if you're being bullied, tell the teacher',
which is not how it is supposed to be interpreted. Social forces have an
unbelievable amount of power in a closed society – if you want some proof of
this, I recommend checking out the book 'The Lucifer Effect' by Phillip
Zimbardo. The power of bad group dynamics to influence individuals for the
worst is such that these dynamics must be broken when they are observed.
The first step in that is recognizing the problem, the second is getting the
support you need to change the system.

Michael Heron Page 80

Working With Others, First Edition

Project Management

Introduction
Project management is one of the skills that any successful Discworld creator
is going to have to acquire. While there is a domain administration team who
are responsible for managing the larger scope of a development, it is you and
you alone who have the responsibility over managing your time to ensure that
your code is developed in a timely and effective way. Project management may
be a somewhat grandiose way to refer to this - it brings up thoughts of Gantt
charts and costing models. I'm not going to talk about any of these systems in
this chapter, because they are very dull and I'd rather chew off my own feet.
What I will talk about is the self-regimen needed to deal with the complexity
of day to day development. This is a far more interesting topic, and one that's
actually possible to condense down to a single chapter. Those (few) readers
who are interested in the formalised aspects of project management should
consult... well... a therapist, I guess.

Project Management 101
Most projects are sufficiently large that they dwarf a novice creator. When
you look at the number of things you need to code, it can be overwhelming.
Unless it's a project of a handful of rooms, you'll find your ability to deal with
the scope of the development is limited. A plan is called for!
In the material for Being A Better Creator, we looked at creating a feature
density chart in which we outlined each of the things our development would
contain. A development plan is the same thing, except simpler and more
granular. How granular you choose to make it is entirely up to you. Imagine a
development plan for a simple room - a room has a number of sub-parts that
can be done independently of each other:

•A room has long descriptions for day and for night
•A room has chats for day and for night
•A room has items for day and for night

Each of these is a 'task' for your project. When all of the tasks have been
completed, then your project is done. As a principle, this is known as
incremental development - each bit of the project is small by itself, but and
you incrementally build your project by completing these small tasks.

Michael Heron Page 81

Working With Others, First Edition

Defining what is a task and what is not is something that comes with
experience of your own capabilities. My recommendation is that a task should
be something that takes perhaps an hour or two of development time - that
way you can easily slot it into whatever time you can spare for the MUD. It
gives a sense of progress if you can tick off things that have been completed
as you go along. They should be big enough to give a sense of satisfaction as
they are ticked off, but not so large that their sheer size is discouraging.
Choosing tasks is a matter of individual preference -it's what makes logical
sense to you as a subdivision of labour. Some people like to have individual
rooms and objects as tasks, some people like to have things conceptually
linked such as 'write room skeletons, write add_items for rooms, write chats
for rooms). It'll be influenced mainly by your own way of approaching your
development. There's no right or wrong way.
Once you have decided on the tasks that go with your project, you'll need a
way of keeping track of how far you are through each them. At the simplest
end this can be done with a few columns on a spreadsheet, or in a notebook.
However, if you want to make the results of your planning easily available to
other interested parties (such as your domain administration team), you may
want to consider making use of our project tracker software. There will be
more on that later in this chapter.

Frameworks
Good projects have a framework that shows how everything links together,
and the development is then attached to this framework as it is completed.
The skeleton area we put together for Learnville is an example of a framework
- it allows for a system of continuous integration amongst multiple developers.
Any project you develop should have a framework, even if you are the only
person developing it. Incremental development is the easiest way to ensure
that this framework exists and that each development effort moves you closer
towards your eventual goal.
Consider something outside the normal examples of this material the
Discworld Oracle. It's partially web-based (the HTML front-end) and partially
mud-based (the handler that works it, and the MUD-based front-end). The
framework for this was to setup the simplest possible connection between the
back-end and the front-end - a handler that had no functionality, and a front-
end that had no interface. The first step in providing incremental development
in this system is to add an option to the interface - for example, to list all
questions. This then forces a further development in the handler (representing
questions and then providing a list of them when queried). When that's done,
there's the Discworld Oracle. From that point onwards, you're just adding
features.

Michael Heron Page 82

http://discworld.atuin.net/lpc/secure/creator/oracle/oracle.c
http://discworld.atuin.net/lpc/secure/creator/oracle/oracle.c

Working With Others, First Edition

Imagine doing that the other way - writing the handler and then trying to put
a front-end on it. Such a development would be ten times more difficult
because of the scope of development. Before you can even see any kind of
progress, you need to write all of the functionality that belongs to the handler.
You then need to worry about how the interface is going to look and how it is
going to communicate with the handler. Only when you have completed both
of these tasks do you actually get to see the system function. Then when you
have the both side of the system developed, you have to test the whole thing -
if something doesn't work, where is it not working? Is it in the interface? The
handler? The connection between the two?
Bite-sized development in a framework gives you instant cues as to whether
your development is progressing along the right lines. This simplifies your
development (you can correct faulty assumptions right away), eases your
testing burden (you know where problems are to be found because they are in
some small subset of functionality you just implemented), and motivates
development (you can see this Mighty Organ grow under your gentle
caresses).

Communication and Team Roles
Project management is all about communication - indeed, you've probably
noticed that's a pretty major theme throughout this material. Much as within a
domain, a project has a number of roles that must be fulfilled. Sometimes all
of the roles will be fulfilled by one person - that's absolutely fine. It's also fine
for one role to be filled by multiple people. However! If this is the case,
communication is vital to ensuring that there is no overlap of authority.

Domain Administration
The domain administration team, unless they are an active part of the
development, are usually 'hands-off'. Responsibility for ensuring thematic
correctness and feature density belongs with the project leader, who is
appointed by the domain administration. It is the domain administration who
give the go-ahead for a project and also who will provide approval for the final
set of features to be developed. It is also the domain administration team who
will approve a project for entry into play-testing or the game according to
domain standards.

Michael Heron Page 83

Working With Others, First Edition

Project Leader
The project leader in the development is the one who is responsible for setting
the 'vision' of the project. They decide on the number and relative complexity
of features, and how the project integrates with the larger context of the
domain. That's not to say they are the only ones responsible for developing the
plan - they're just the ones that get the final say on what is to be put forward
and what is not. The domain administration is the source of approval of the
plan, but the project leader is the one who develops the plan for approval.
For projects involving more than one developer, the project leader is usually
the one with the most experience coupled with the best people skills. Project
leading is more of a social activity than a development one, although it is
unusual on Discworld that a project leader will not also pitch in with the
coding.
The project leader is also responsible for keeping everyone motivated, and for
making sure everyone is happy with what they are developing and knows how
they are contributing to the overall effort. Nothing sows dissatisfaction easier
than people not being sure why they are doing something. The project leader
identifies developmental problems and puts in place solutions to deal with
them.

Documenter
The documenter in a team is the one who makes sure that the result of
discussions is made available in a suitable format - for example, on the wiki.
The documenter is usually the one who keeps the project tracking
documentation up to date to ensure it reflects the developmental reality.
While this is unlikely to be a 'full-time' role within a project team, it should be
an on-going role. Part of the requirements of a successful project is providing
your domain administration with updates on progress - it is almost impossible
to co-ordinate a domain unless you know what everyone is doing, and how
much of it they have done. A documenter can ease this burden on their
domain leadership by making sure the information is available in some pre-
agreed store.

Michael Heron Page 84

Working With Others, First Edition

Developers
Almost everyone on a project team will be a developer - we don't have such a
fine specialisation of creator jobs on Discworld as such that a creator will be a
'professional manager'. Everyone is expected to dual-role to a degree.
Developers are responsible for actually implementing the plans that have been
agreed upon, and making sure that the project leader for the project is aware
of problems in a timely manner. Developer problems can revolve around many
different areas, such as real-life distractions, technical issues, and social
issues within the project. As long as these are being communicated to the
project leader, then these blocks can be removed with appropriate redress.
Real-life issues can be dealt with by reassigning some duties to a developer
with more free time, technical issues can be resolved by pairing a developer
with someone who has the necessary coding skills, and social issues can be
resolved through mediation and conflict management. All of this can only
happen if the project leader is made aware of the problems.

Subdivision of Effort and Ownership
The only way in which a project works is if everyone has their own little part
of it they are developing. Part of the job of a project leader is to subdivide
effort so that everyone has something to do, that they are the person who is
responsible for it, and that they are happy with the work they are to do. Every
task should have a named creator who is responsible for its development - if
things are left as 'we're all responsible for this' it generally means that no-one
is responsible. This is a well established principle in social psychological
research where it goes under the name of the 'bystander effect'. Nobody
works towards the task because everyone thinks someone else will do it.

Michael Heron Page 85

Working With Others, First Edition

Responsibility in project management is another word for 'ownership' - this
may seem to strike at the heart of the 'communal code' system we operate on
Discworld, so I will talk about this a little to explain why ownership is
important in project development and why it doesn't violate our deeply held
principles of shared source.
Ownership can be expressed in a level of autonomy over design choices. A bad
project leader enforces a development from the top - 'This is the development
you will code, and it will be coded exactly like this'. Projects that operate
under this principle hardly ever succeed. In volunteer developments
especially, coder motivation is a finite resource that has to be grown and
nurtured, and that doesn't happen through management by fiat.
Half the fun in developing is to come up with ideas and bring them to life. It's
nowhere near as much fun to implement someone else's ideas. This is
something that our players often don't realise - an idea report such as 'Do
something cool with otters' is usually a far better prospect than a five page
idea report on a deeply-complex 'otter management' subsystem - creators
need to be able to take ownership for the ideas they are developing. The code
that is being developed is MUD code, but delegating the responsibility for
deciding what that code is going to be is a valuable motivational tool. When
people have ownership over something, they have an incentive for doing well
with it, and they can take a pride in its success that is not available when all
you did was set out the code. Half the fun is to plan the plan.
Subdividing effort goes hand in hand with delegating ownership of the project.
Subdivision should impact on the 'fun stuff' as much as the 'boring stuff'.
When you are subdividing effort you should make sure that some of that effort
involves a degree of freedom to operate. 'You're responsible for designing and
coding the quest in the castle' is a better task than 'I have designed the quest
on the wiki, and it's your responsibility to code it'. The latter means that the
coder can later shrug and say 'I only coded it, someone else designed it - it's
nothing to do with me that it sucks'.
The ownership then is not over the project or the code, but is instead over the
way a part of the project is to be designed and evolved. Once the project is
completed, then that ownership is lost and it transfers back to the domain
(and the MUD in general). It is a short-term ownership, rather than something
that is gained for the long-term.

The Discworld Project Tracker
The MUD actually has a project management system that is available - or
rather, it's a project tracker system with some management facility. You can
find it http://discworld.atuin.net/lpc/secure/creator/project.c here. It's
important to know how the project tracker works, because all projects that
enter the playtesting stage must be registered with the tracker. How you
choose to use it beyond that is entirely up to you.

Michael Heron Page 86

http://drakkos.imaginary-realities.com/wiki/index.php?title=http://discworld.atuin.net/lpc/secure/creator/project.c_here

Working With Others, First Edition

When you open up the tracker, you'll be greeted with the following menu:

There will also be a list of projects that have been 'touched' (modified) in the
past week. Feel free to browse around these, it's good to see what's
happening elsewhere in the MUD.
Each domain has an entry along the top, and clicking on the link will bring up
the projects that belong to this domain. Note though that this won't
necessarily reflect the full range of development since projects often do not
get registered with the tracker until they are in playtesting, and projects that
have been abandoned often still linger because no-one has removed them.
It's very simple to add a project to the tracker - you click 'add project' at the
top, and you'll be given the following page:

The Project ID is the unique identifier for the project in the system. It's the
special code used to distinguish one project from another. This can be
anything you like, but it will be made into one word when your project is
added. The name is a 'human readable' short description of the project.

Michael Heron Page 87

Working With Others, First Edition

We’ve spoken about what a project leader does in a project - you should
record who the leader is so there is a clear chain of authority. Notice you can
only have one of these - a team can't function effectively with two chains of
command. Some projects belong to several domains, and a list of these can be
provided. Projects belonging to multiple domains will show up in the
individual domain queries.
Estimated completion is how long the project is expected to take. Note, this
isn't a promise, but an estimate. You should be realistic with this - overly
ambitious estimates are of no use to anyone. Next, all the creators involved
with the project are listed - the links associated with a creator's name in the
project tracker will bring up all of the projects with which they are involved.
Project size and complexity are two important values as they directly impact
on how much playtesting attention the project receives. Don't fret it too much
to begin with - you can easily change any of the data you enter at a later date.
The size of the project influences how many playtesters are assigned in a
playtesting rotation, and how long a rotation period lasts. The complexity
influences how many rotations a project receives. This is all handled
automatically by the playtesting system, but setting these values correctly is
important in ensuring your project gets tested effectively. The figures relating
to each of the values are found at
http://discworld.atuin.net/twiki/pt/bin/view/Playtesters/PlaytestingRotations.
Guilds allows you to indicate which guilds should be included as part of the
rotations - there's no point in thieves testing a wizard only area, for example.
Leave this blank if there are no specific guild restrictions.
A project may have several substantial subprojects, each with its own entry in
the handler. Take a look at the entry for Genua City to see this in action. You
can list each of these subprojects as being part of this project.
If you have a wiki for your project, then make sure you add its details. One of
the benefits of the project tracker is it makes it easy to integrate all these
disparate bits of information into one consistent location. Finally, you can give
a short description of the project - you don't need to be too detailed about this,
certainly if you have a wiki page set up. It's useful for those who want to
know, at a glance, what the project involves.
All projects initially start off on the 'Heap' - this is where they're officially a
domain project, but no active development is ongoing. By clicking 'edit
project', you can set the project to be one of a range of other states:

Michael Heron Page 88

http://discworld.atuin.net/lpc/secure/creator/project.c?projecttype=Details&pid=GenuaCity
http://discworld.atuin.net/twiki/pt/bin/view/Playtesters/PlaytestingRotations.

Working With Others, First Edition

State Description
Heap Heap projects are on the 'todo' list of a domain. No active

development is occurring.
Development The project is active and undergoing developer attention.
Playtesting The project has entered the playtesting stage, and is

recorded with the playtesting handlers. Don't set a project
to this unless you are actually releasing it, because it
triggers assignment of PTs and automated mailings.

Play The project has been completed and is now in the game
for players to enjoy (or not).

Limbo The project's status is undecided, usually because some
domain development has been invested but the project
development team is no longer active, or because a
project has left playtesting and its future state is currently
under review.

When an area enters playtesting, you should also fill in the 'notes for
playtesters' section indicating how the development may be tested, how it can
be reached, and any features you would especially like to receive playtester
attention.
You can also add tasks to the project:

These tasks carry with them details on how complete they are, and this will
automatically update the 'overall' completeness of the project - as you
complete tasks, you'll see the project to which they belong become more
complete over time. You can override this behaviour, but if your tasks are
comprehensive then you won't have to.

Michael Heron Page 89

Working With Others, First Edition

Conclusion
Project management on Discworld is about communication, not processes and
diagrams. However, a basic understanding of roles, responsibilities and
subdivision of effort can make an otherwise problematic project function
smoothly. At the very least, having a list of your tasks and their status is
hugely useful in giving you a sense of the scale of your development and
progress on an incremental basis. This insight is invaluable for communicating
your status to those who are responsible for co-ordinating your project across
an entire domain.
While the project tracker software on Discworld is mandatory only for projects
entering playtesting, it can also be used for providing easy access to your
development progress to anyone who may be interested - while only your
domain administration are likely to have a specific 'need to know', this
visibility of effort is something that enhances the collegiality that leads to a
successful development team.

Michael Heron Page 90

Working With Others, First Edition

Maintenance

Introduction
Maintenance is an on-going task in a continually evolving environment like
Discworld. I think it's fair to say that, with the exception of a few individuals,
we don't do as much of it as we really should. The sheer complexity of our
codebase virtually guarantees a never ending struggle to fix defects and cope
with changes elsewhere in the game. It's an important process though and
deserves proper consideration when we talk about how individuals in a
domain should pull together to improve the quality of the code in the game
and in development.
Reading and understanding code requires a different set of skills to writing
code – they are related, but not identical, skill-sets. Maintenance involves
being able to look at a piece of code and dissect its inner workings. You
shouldn't turn down an opportunity to do maintenance work if it presents
itself (and it always does) because you'll get a good test of skills that you may
or may not yet possess, and it's a way to provide a very real positive impact on
your domain.

Maintenance In The Software Development
Process

We don't follow a formal software development process on Discworld, but if
we did maintenance would be at the very end of it. Maintenance is
traditionally the phase of software development that consumes the largest
number of resources – while development is temporary, maintenance is
eternal. Changes always need to be made to code, and while the problems can
be multiplied by a bad software development process, they are simply a
natural artifact of the complexity of software. You can't get rid of them, no
matter how carefully you code – and even if you could, maintenance centred
on fixing problems is only part of the process.
Maintenance tends to fall into one of four categories:

•Corrective maintenance
•Adaptive maintenance
•Perfective maintenance
•Preventative maintenance

Michael Heron Page 91

Working With Others, First Edition

Corrective maintenance is what people tend to automatically associate with
the process – fixing bugs. Bugs don't necessarily mean the code was badly
written – many problems are noticed only when enough eyeballs have been
passed over the code. No matter how carefully you plan, bugs you could never
have dreamed of will be reported when a development goes live. Players will
always attempt things you could never have anticipated:

'Yeah, so I tried to eat the table and I got a runtime error...'

Adaptive maintenance is updating code to reflect changes in the underlying
software systems, or the provision of additional features in existing code. In
all cases, this has to be done with compatibility with existing code in mind,
and with provision in place for ensuring previously stored data persists over
modifications.
Perfective maintenance concentrates on improving the maintainability and
efficiency of existing code systems. The driver on Discworld is single-
threaded, and our highly complex code-base means we eat up an awful lot of
CPU and memory resources. Perfective maintenance is about improving the
scalability and performance of code. Optimization is a secondary concern for
sensible software developers – it's only when code is operational that you can
really see what code needs attention in this department.
Preventative maintenance seeks to fix small problems before they become
bigger problems – there are always a few of those in any development. I like to
refer to this as the 'we'll fix it in editing' problem – every so often there is a
persistent bug you can't track down, and rather than fix the root cause you
apply a band-aid fix.
One example of this would be if your code was persistently getting an 'off by
one' error in a loop and you were unable to find where the extra iteration was
coming from. You can either track it down and solve the problem (which could
take hours, if not days), or say 'Oh, I'll just make it loop one less time'. That's a
band-aid solution – the problem isn't that the loop is being executed one extra
time, the problem is that the number of loops isn't what you're expecting it to
be. That's almost guaranteed to cause problems elsewhere in the code, given
time. Preventative maintenance takes these band-aid problems and resolves
them.
The first thing that is needed for a maintenance strategy in a development
environment is a formalized system for recording bugs when they are
encountered. Luckily, we have a very powerful and entirely bespoke system on
Discworld for doing this. We'll get to that in a few moments.

Michael Heron Page 92

Working With Others, First Edition

Domain Maintenance
Few domains have a formal approach to maintenance. It tends to come and go
in cycles – the bug-count for a domain will reach a point whereby the domain
leader says 'Fix these or I'll cut you!', everyone in the domain spends a few
days reducing the bug-count to something a little less painful to look at. Then
everyone goes back to their Regularly Scheduled Programming and the whole
cycle repeats. Every now and again a domain appoints a 'maintenance czar',
but it is often thankless and grinding work with few observable gains. No
matter how hard you try, the bugs keep coming.
The best approach is to have everyone pitching in – that way, nobody gets
overwhelmed and everyone has to take responsibility for bug-counts in their
assigned directories. You'll have probably noticed that regular reports on the
domain's bug-count get posted to your domain board. These are valuable
updates on the relationship between bugs reported and bugs fixed. There are
also useful graphs of activity to be found here showing the relationship
between bugs opened, and bugs fixed.
Everyone has to take ownership for this process – bug fixing is a domain task,
not a task for individuals. There are bug-fixing stats that can be accessed
using the fixed command, such as:

fixed all

Or:

fixed drakkos

The figures for this are somewhat distorted because of several large-scale
crashes of our bug-fixing databases – those bugs that were fixed prior to the
last crash do not show up on the tables. However, the tables can be a good
motivational tool and a way to make a game of maintenance – friendly
competition within a domain can be healthy, provided it remains friendly.
It's a simple rule for a domain to aim for to fix more bugs in a week than are
reported – that way the count heads in the right direction. It is possible,
through hard-work and commitment, to get a domain bug count to single
digits and keep it there. Bugs will always be reported, but if everyone takes
ownership of maintenance they can be dealt with quickly and effectively –
that's even something players tend to remark on!

Michael Heron Page 93

http://discworld.atuin.net/lpc/secure/creator/bugs/

Working With Others, First Edition

Microsoft have a system of maintenance called Zero Defects (don't laugh) –
this doesn't mean that their code has no problems, it means that their
development strategy is that no new features are added until all known issues
are resolved. A variation of such a strategy would be a worthwhile policy for a
domain – 'no new development while the bug-count is above 50!'. This focuses
everyone on the collaborative effort to manage the domain's responsibilities
towards maintenance, and communicates the importance of the effort to all
developers.

Where Do Bugs Come From?
Bugs come from all sources, and sometimes they are not simple to fix.
Sometimes indeed they are unfixable. Sometimes they are introduced as a
consequence of fixing another bug – a well known informal metric is that for
every two bugs you fix you run a good chance of introducing a new one as a
side-effect. Another metric derives from experimental data suggests that, as
far as commercial software goes, there is an average of between twenty and
thirty bugs for every thousand lines of code. That's commercial software mind,
written (one assumes) by people with formal training as software engineers.
Sometimes bugs stem from temporary issues – someone broke an important
object and everyone runtimed. Those runtimes led to dozens of bug reports
unrelated to the domain in which the bugs were reported, and as such don't
really reflect the issues with domain code. A quick pass through the domain
bug list can remove these from the statistics.
Sometimes they're not actually bugs at all, but ideas that have been
misclassified. The more opinionated players may report their ideas as bugs on
the grounds that 'My not being able to do X is a clear bug'. Our error system
allows for these to be easily reclassified, so again a pass over the domain bug
lists can remove these from consideration.
Sometimes the bugs are legacy issues – because of a mismatch between the
old way of doing things and the new way of doing things, code stops working
properly and nobody has re-factored the code to fit in with the new regime.
Such bugs can last for a long time because the amount of effort that need be
invested to fix them far outweighs any potential benefit.
Sometimes the bugs are unfixable – we have several of these and they are a
consequence of the underlying structures not permitting certain kinds of
functionality. It's hard to deny them because they are actually bugs, and you
can't mark them as fixed because fixing the problem is outwith your powers.
Sometimes bugs simply linger, because nobody found them interesting enough
to fix. Some bugs are more interesting to deal with than others, and so these
tend to be dealt with preferentially leaving the more uninteresting bugs
undealt with. Every domain has a good few of these moldering in the archives.

Michael Heron Page 94

Working With Others, First Edition

Bug Triage
When dealing with a massive backlog of bugs, it's worth adopting some form
of triage system. Triage is a system of prioritizing based on severity so that
the greatest gain is obtained from limited resources. Your development time is
not infinite, and time you spend bug-fixing is time that is not spent on your
assigned projects. Triage can be based on impact, and also on severity.
First of all, there are the critical bugs. They have to be fixed as soon as is
humanly possible. Usually these are the bugs that have an impact on the
functioning of the MUD as a whole – infinite XP bugs, infinite cash bugs, or
bugs that seriously impact on a player's ability to function (destroyed
inventory, corrupted playerfiles, all that kind of stuff). All domain development
should halt until these are resolved because their effect extends beyond the
domain.
Next come the high priority bugs that seriously impact on the functioning of
code within the domain – a fault in a domain-wide crime handler, or a fault in
a domain-wide room inherit, would be examples of these. A bug that allows
someone to completely clear their criminal record would be an example of a
high priority bug – it doesn't impact on the MUD as a whole but seriously
infringes on the correct functioning of the domain. Moreover, the scope of the
bug is across the entire domain.
After that are the medium priority bugs – things that impact on an area of a
domain but do not extend further. An issue with a key area feature would fall
into this category – a problem with a quest, a broken shop, or a
malfunctioning area inherit would all fall into this category.
Finally come the low priority bugs – things that affect a single room, single
item, or single NPC.
The priority of the bug can be cross-referenced with the severity to give you a
more granular view of the issue:

Issue Severity
The code is completely broken and does not load. Highest
The code gives disproportionately large advantage or
disadvantage to users

Highest

The code does not function with regards to its key features High
The code malfunctions with regards to its key features High
The code does not function with regards to ancillary
features

Medium

The code malfunctions with regards to ancillary features Medium

Michael Heron Page 95

Working With Others, First Edition

The code has cosmetic issues Low
The code has typographical errors Low

A malfunctioning domain level inherit that deleted player-files would thus be
of high priority and highest severity – the only bugs you'd look to fix before
that would be critical bugs of similar severity.
Having put together a triage for domain bugs, a concentrated effort can be
made to resolve all the most important ones immediately, and the ones of
lower priority can be addressed on a more incremental basis.

The Error Handler
Our error handler is remarkably powerful, giving considerable control over
the bug-fixing process. It comes in both web and mud flavours, although the
functionality is the same for both. We'll concentrate on the in-mud system
here as the web system should be intuitive for anyone who understands how
the process works.
First of all, pick a directory that you know has bugs in it. You'll find plenty of
these in the weekly domain status report that gets posted to the board.
Navigate to that directory in the mud and use the command to invoke the
error handler:

errors

You'll get an interface that lets you navigate through all bugs reported on that
directory. The bugs will look something like this:

Bug #99682 OPEN BUG ROOM
Date Reported : Tue Sep 23 16:43:54 2008
Assigned To : ptoink
Reporter : gruper
File name : /d/waterways/islands/pirates_cove/cove/beach
Directory : /d/waterways/islands/pirates_cove/cove
The Jolly Farmer and The Sea Pig show up as being docked here, but do not
exist according to the ship_handler.
Environment: /d/waterways/islands/pirates_cove/cove/beach (beachfront)
[1 of 1] STFCOLHA-+PNGQ :

Each bug in the system has a unique ID. If you want to see that bug
specifically, you can view it using the pterrors command:

pterrors 99682

Michael Heron Page 96

Working With Others, First Edition

Note that there is a lot of information provided with this bug report. Along the
top is the status of the bug, which can be any one of the following:

Status Meaning
Open The bug has not been dealt with, and remains an issue to

be resolved.
Fixing We accept this is a bug, and we are actively working to fix

it.
Considering We haven't quite decided whether this is a bug or not, but

we'll mark it as considering to show someone has looked
at it.

Fixed This was a bug and it has been fixed.
Denied This is not a bug, you are on crack.

Changing the status of a bug triggers an inform for the person who submitted
the report – it's not purely for our own benefit.
Next is displayed the category of report – it can be a bug, a typo, or an idea.
Our example above is a bug of type 'room', meaning the report was submitted
on the room in which the error was encountered. Bugs get categorized by
which object they were reported on – they can be room bugs, object bugs, help
bugs, ritual bugs, spell bugs, command bugs, or general bugs. This
categorization allows for you to easily access the specific bugs in which you
are most interested.
The rest of the bug report should be fairly self explanatory, except for the
gobbledygook at the bottom – those are your menu options for what you can
do with the error. Instructions to the handler are issued as a command code,
and any associated data. Let's say for example that this bug doesn't really
belong to this directory and we want to send it somewhere else. We can use 'f'
(forward) along with the directory where we want it to go:

f /w/drakkos/

If we want to change the status, we can use 's' (status) along with the status
we wish the report to have:

s fixed

If I want to provide a custom message to go along with this, I can add a
'custom' tag:

Michael Heron Page 97

Working With Others, First Edition

s fixed custom

Or if I don't want to send a message at at all:

s fixed none

I can use 't' to change the type of the bug:

t typo

Or 'o' to change the category:

o object

You can navigate forward and backwards with + and -.
The web-based front-end works exactly the same way, except with a nicer
interface and easier access to functionality:

Selecting a directory in the web handler gives you a much easier way to
navigate through all the reports.
A combination of the two often serves best – 'errors' to get an at-a-glance look
at the errors in your current working directory, and the web interface for
more involved work. Your mileage will vary though – some people exclusively
choose to use one over the other.

Michael Heron Page 98

http://discworld.atuin.net/lpc/secure/creator/error_query.html

Working With Others, First Edition

Conclusion
A solid maintenance strategy will help marshal individual efforts into a larger
collaborative approach to domain bug-fixing. The downside of everyone
owning the code is that everyone is responsible for bug-fixing – quality control
is a joint effort within a domain.
Discworld has some very powerful error management software, and you
should make an effort to become familiar with it as it is something you'll find
invaluable as you do your day to day work as a creator.
While maintenance is not glamorous and does not give the same sense of
player satisfaction that a new and fun piece of code will, it is vital to the well-
being of the MUD. We have a massive bug count, and only by everyone
pitching in will we be able to arrest the increases and eventually turn them
into decreases.

Michael Heron Page 99

Working With Others, First Edition

The Experience Divide

Introduction
One of the persistent areas of conflict that exist between developers on
Discworld is the divide between 'professional' software developers, and
'amateur' programmers. I don't intend for that to be pejorative, but it's a
situation that must be resolved for effective collaboration to proceed. As a
matter of full disclosure, I will make mention of the fact that my degree is in
software engineering, and I have been involved in teaching software
development and programming at all levels of higher and further education
for the past seven years. I have also been called upon for external professional
consultancy and software development, as well as research in the fields of
artificial intelligence, knowledge management, and accessibility support.
Whether that makes me a professional or one of those who 'can't do, so teach'
I will leave as a judgement for individual readers to reach.
The fact that we require no software development experience for creators on
Discworld has been one of our strengths in the past – creators require a fairly
unusual set of skills in order to fulfill their day to day duties, and finding
professional programmers with those skills is a daunting task. Instead, we find
people with some of those skills (or who we believe can develop those skills)
and work to provide an understanding of programming. In this chapter, I'm
going to talk about some of the issues that come along with this, and how a
constructive attitude on the part of professionals and amateurs can work to
everyone's advantage.

Professional and Amateur Programmers
While many of our creators have advanced training in technical topics,
comparatively few have a background in formal software development. This is
a very specific topic embracing a number of esoteric disciplines across a
number of broad fields – requirements gathering, analysis, design and
implementation. A software engineer is not the same thing as a programmer,
it's a broader discipline than that. These are the professional programmers –
by definition, programming is their profession.
On the other hand, many of our creators do have prior experience with
programming in one form or another – introduction to basic programming
concepts is a core part of many school and university curricula. However, no
matter how much experience someone may have in writing programs for
themselves or as an ancillary part of their job, this development is strictly
amateur. By this I don't mean that their coding is bad (their code-fu may
actually be very good), I mean that the mindset that accompanies the
development is not that of a professional.

Michael Heron Page 100

Working With Others, First Edition

Partially, the difference comes down to an intended audience. Professionals,
while they often write programs for their own purposes, are usually writing
for an audience. The intention is that, at some point in the future, real people
who are not the professional will make use of the software that has been
written. Amateurs tend to write for their own use – to pass assessments, or to
do some task that is unique to their own requirements. Amateur code may
eventually make its way into the hands of others, but that's not why it was
usually developed.
Writing software for other people engenders a certain way of thinking about
software development. An amateur programmer can compensate for a lack of
formality in development when the program is being used, and can discard
inconvenient requirements at will. If an amateur has written a program to
check their lottery numbers, for example, they don't necessarily need to have
a user interface – it could be set to read the numbers in from a file. If checking
for the bonus ball is too much work, then it can be left out of the functionality.
The only person using the software is the person writing it. There don't need
to be meaningful error messages or input validation – if there's a horrible
error that occurs when using the program, it's fairly easy to work out what the
problem was and correct for it. Amateur development gives an opportunity for
some of the programming planning stage to be shuffled to the user interaction
stage where they can be ignored or compensated for.
Professionals tend to fall into this mindset when writing code for themselves. I
have a piece of code that I wrote for generating electronic versions of books I
had written from XML documents. It has no user interface and is configured
entirely with config files – to anyone but me, it's unusable, and it requires the
files to adhere to a fairly lax, ad hoc standard. I could never give this software
to anyone else because it makes so many assumptions about what I am going
to need. It's a piece of software written with an amateur mindset.
Amateurs thus tend to focus on solving the problem, and the extra insight into
programming that comes along with this is an extra benefit but not integral to
the process. Professional development doesn't permit that luxury because you
don't know who is going to be using your code (although you may have some
shrewd ideas that can inform your development). There needs to be data
validation, input handling, and ways to resolve ambiguity. Requirements can't
simply be chopped away from a project without getting multiple people to sign
off on changes. You can't simply expect people to work around bugs, or
interpret misleading output. Most of all, you have to accept you are going to
be rated and judged on the basis of the work you do – people are actually
going to see the software you put in place! Additionally, because a
professional knows this is going to be the case, code is usually written in such
a way to minimize the problems of future development. All the while, the
professional is looking for ways in which to improve on the process so as to
make future development smoother or more effective. Professionals are thus
focused on the process, and the problem itself is only a stepping stone to
further clarity of understanding.

Michael Heron Page 101

Working With Others, First Edition

This is where the unique problem of Discworld comes into play – without the
necessary experience in professional software development, everyone writes
code the same way that an amateur does. The problem is, the code should be
developed according to the mindset of a professional – we're hardly ever
writing code for ourselves, the ultimate destination of our code is for it to be
operational and experienced by players.
Growing into the mindset of professional development is something all
creators do eventually, if they hang around for long enough. However, the
time spent in that process of developing that mindset can be a source of
tension between professionals and amateurs.

Deep Smarts
More than anything else, the thing that separates an amateur developer from
a professional developer is a thing known as 'deep smarts'. That doesn't mean
that a professional is smarter than an amateur, it means that a lot of their
insight comes from experience rather than pure natural ability, and that
experience can only come with time. It takes time to build mastery in a subject
– usually around ten years or so before the skilled practitioner really becomes
a master practitioner. Professionals are distinguished by how far they are
along this process.
An amateur may know more obscure coding trivia than a professional – they
may have more up to date skills because they are conversant with a hip
technology the professional hasn't had time to become familiar with. That's
not what makes someone an expert in a topic.
In many ways, the building of deep smarts can be likened to a gradual
internalizing of knowledge, where explicit knowledge (that which can be
expressed) becomes internalized into tacit knowledge (that which cannot be
expressed). People with deep smarts in their subject area can tell at a glance
things that others may need to puzzle over. They understand the complexities
and interactions of internal and external influences. They understand the
possible alternatives and which is more appropriate for the task at hand. More
than anything else, Deep Smarts is the ability to see patterns in jumbles of
information.
The thing about Deep Smarts is that, although some of them are transferable
(social skills in one arena tend to translate quite neatly into social skills in
another), on the whole mastery of one subject does not confer mastery in
another. There is no short-cut to building deep smarts, you just have to wait
for time and experience to develop them, and in the meantime practise the
skills whenever you get an opportunity.

Michael Heron Page 102

Working With Others, First Edition

Experts behave differently from novices – they can see problems before they
occur, and can make decisions swiftly, even instantly, in a way that is far
beyond the capability of a novice. They can instantly identify the context of a
problem or a solution because of the bank of experiences they have built up,
and can make fine distinctions between one situation and another that are
unknowable to a novice. They know when usual rules don't apply. Most
importantly, they know what they don't know, and what they need to know in
order to provide a solution to a problem.
Deep smarts is the reason why the questions that a professional developer
may ask you about problems you are having are entirely contrary to what you
may have asked in the same situation. It's why a professional can identify that
the real problem with your code is on line 355 of a different object, while the
MUD is telling you the problem can be found on line 48 of your own.
I will reiterate that I am not saying all professional programmers have deep
smarts (some do, some don't). All I am saying is that professionals, by virtue of
earning a living on the basis of their software development, are further along
in the process of developing deep smarts than any amateur can hope to be.

The Tension
From the perspective of professionals, a lot of the tension comes from over-
confidence on the part of an amateur. There's a world of difference from
writing a complicated handler to writing a simple NPC – it's not just a matter
of invested effort in code or understanding of the problem, it comes down to
experience and ability to architect a complex solution to a complex problem.
However, that's something that's obviously true only from the perspective of a
professional because the amateur, by definition, doesn't have the breadth and
depth of experience in building code to appreciate the gulf.
Sometimes people just don't appreciate how much of a framework the MUD
provides for them in terms of supporting very complex functionality with
comparatively little effort. Most of these frameworks of functionality can't be
relied on for lower-level MUD code. This engenders a sense of 'Well, if I could
pick it up without any previous experience at all, how hard can it really be?'
attitude that can spark off conflict. Accusations of 'sloppy' or 'lazy' coding can
especially rankle since they almost always stem from a position of relative
inexperience. Of course, such accusations are rarely constructive even when
they come from a position of relative experience either, but never mind.

Michael Heron Page 103

Working With Others, First Edition

Amateurs on the other hand have cause to resent professionals – I'm sure a lot
of what I have been writing comes across as patronizing (although it isn't
intentional), and professionals can be unfairly dismissive of the work of
others. There can also be a rather unhelpful divide between 'coders' and
'builders', with the former tending to look down on the latter. This isn't an
attitude that is especially pronounced on Discworld, but is endemic in some
other MUDs. The professional who derides the work of more amateur coders
is guilty of a sin far less justifiable than the lack of understanding
demonstrated by an amateur.
Moreover, because of the entirely different mindsets (one focused on problem
solving, one focused on process improvement), collaboration between the two
groups can be an exercise in frustration. The professional is well placed to
give guidance, but the amateur just wants an answer to their question – they
don't want a lecture on process or to be told to re-engineer their approach.
A lot of the advice given by professionals tends to be abstract and of dubious
immediate worth – it often centres on good practice, and ways of limiting
problems in the future. Without the benefit of a comprehensive bank of
experience, it's hard to see why this advice even matters – the only way you
really understand the value of maintainability is when you have to completely
re-engineer a piece of code because someone didn't care enough about your
time to write it cleanly.
Part of the benefit that comes with a more professional mindset is to be able
to work at a level that is appropriate for the problem – this is why I mentioned
in an earlier chapter that premature optimization was a bad idea... it's easily
possible to over-engineer a solution when a more modest approach is
warranted. Shaving half a second off of the loading time of an object that gets
created when the MUD starts and stays loaded until it shuts down is not a
good investment in effort. Shaving a tenth of a second off of the time taken to
execute a loop in the combat handler would be a valuable efficiency
improvement. Experience helps identify which situation is which.
Amateur programmers especially have a tendency towards self-selection in
programming tasks – essentially, people pick the tasks that are most
interesting to code. These may not be the things that are most valuable to
code. This kind of cherry-picking of duties is good in that it ensures a
developer is motivated by the work they are doing, but more problematic in
that it means the less fun stuff might not end up getting the same attention.
This can frustrate professionals who then feel duty bound to pick up the slack.
It should also be pointed out that two professionals of different backgrounds
are often a source of tension too... undoubtedly anyone familiar with the
concept of 'dominance' in herds of animals can work out why!
All that is required to resolve these problems is for both sides to be willing to
view things from the perspective of the other, and to be a little less critical on
the efforts that others have invested. That's true for everyone actually, not
just those on either side of this particular divide.

Michael Heron Page 104

Working With Others, First Edition

Strategies for Success
There are actually great opportunities to ensure that people on both sides of
this divide can work together in a way that increases the effectiveness of both,
providing both sides are willing to yield a little. Pairing people together can
achieve this, even if it's only an informal, ad-hoc pairing.
Professionals can provide invaluable aid to amateur coders by advising on
architecture of code and adherence to quality standards. A professional can
also greatly increase the capabilities of a novice by delegating sections of
more complicated work and requesting it be written to some set criteria
(usually the parameters, return type and functionality). Getting someone to
participate in a more formal process like this can really underline the
importance of the exercise when they see how easily their code can slot into a
larger development. The professional gets a little extra developmental effort
in exchange for a little of their expertise, and the amateur gets a little more
knowledge in exchange for a little effort.
In order for a process like this to be effective, the professional has to be
willing to actually be constructive – getting a piece of code back, sighing and
saying 'Well, this needs rewritten' isn't going to give extra satisfaction for
anyone. The professional also has to be prepared for the extra effort to be
delayed gratification – adding a novice to a complicated project will slow
things down to begin with before it speeds them up.
This kind of coaching effort can be hugely beneficial, but it has to be done in
the right way. For one thing, both participants need to agree on the direction
of the partnership – friction on something fundamental like why something is
being done will frustrate future efforts to transfer knowledge.
Tacit knowledge, by its very nature, cannot be expressed. It's important then
that a professional gives opportunities for an amateur to observe how
something is done, as well as what is done. They should talk through their
decision-making process with the amateur – they won't actually be able to
identify every thought that went through their head, but they might be able to
signpost some of them.
Knowledge building can be improved by finding some common ground
between the two participants – expert knowledge can be transferred
effectively with small vignettes or war stories. Stories convey a lot more
information than instructions do, because by their very nature they are
complex and highly nuanced.

Michael Heron Page 105

Working With Others, First Edition

A professional relating their experience through the use of relevant stories
can be highly effective on two levels – on one, it gives the amateur a chance to
parse their own meaning from the tale, and on two it helps induct the amateur
into a wider community. Simply knowing certain stories is a badge of
membership in many respects – there are stories about Discworld (or more
correctly, about people who are a part of Discworld) that you simply won't
know unless someone else considers you to be an insider rather than an
outsider. Over fifteen years, Discworld has had its fair share of drama and
gossip, and being 'in' on that gossip reflects your inclusion in a wider social
context.
There is no need for a coaching process to be mandated from on high – the
best such collaborations form spontaneously between people who genuinely
like each other. However, within a domain it is worthwhile for a more
experienced developer to keep an eye on younger creators to make sure that
they are well supported and producing code that everyone can be proud of.

Conclusion
I do apologise if reading this chapter made me sound like a pompous dick. My
only excuse for that is that I actually am a pompous dick and it's sometimes
hard to hide it. The fact that experience plays a big part in group dynamics
should be uncontroversial though – the important thing is making sure that
the friction caused by varied levels of experience is harnessed to a worthwhile
aim.
Those with a more professional background in software development should
do their best to respect the efforts of more amateur developers. Amateur
developers should appreciate that there is a gulf of understanding between
themselves and professionals. If both parties do this, relative harmony can be
achieved.
Amateurs should take heart in the fact that they are in a tremendously good
environment for learning more about software development as a process. We
may not follow any sensible or formal strategies for developing our game
(largely because it's hard to get volunteer developers to do anything they
don't really want to do), but you'll at least understand why they are something
to shoot for.

Michael Heron Page 106

Working With Others, First Edition

Wrapping Up

Introduction
So, that's our discussion of working with others, and the tools we have in
place to support the process. The social aspect of Discworld is the thing that
keeps most of us logging in, day after day, week after week, and year after
year. There is a genuine satisfaction that comes from working together with
other people to produce something of which everyone can be proud. However,
it's also possible for people to clash, fight, cause problems, and generally
degrade the atmosphere for everyone. Everyone is guilty of this at one time or
another, and it can be invaluable in letting people blow off a little steam in
tense times. We all have to work together to make sure that the problems are
not systemic.

Collegiality
You will hear a lot about the viciousness of creator politics, usually amongst
misinformed players. I want to emphasise something I have said a number of
times through this material – the creatorbase is, on the whole, a collegial
body. We have disagreements, sometimes very strong disagreements, but the
traditions that are at the heart of being a creator on Discworld are about
openness and constructive engagement. What people misinterpret as politics
are usually rooted in one or more parties not being able to integrate
effectively into that environment.
Collegiality implies a common respect for the commitment that everyone has
to the purpose of the organization. I would hope that we all agree on that
central point – every creator is here to improve the game. We may disagree in
how improvements are to come about, but we have to have faith that we have
at least common desires in common.
We are also a very informal body – there is a hierarchy, to be sure, but
membership of the higher ranks is based on fulfillment of a role. They are job
titles, not aristocratic endowments (even in the past when directors were
lords and trustees were high-lords, that was still the case). Domains are an
administrative structure to ensure cohesion of purpose, not as a way to add
restrictions to a body of volunteer developers.
Collegiality as a founding principle of our development system requires
everyone adhere to it. Fostering that is a process in which everyone has a
stake.

Michael Heron Page 107

Working With Others, First Edition

Further Reading
While this material will give you the necessary grounding in our tools and
philosophies, there is so much more to learn. Most of it applies to
development in general – the fact that we are game developers does not
invalidate what people have to say about constructive engagement with
colleagues. The following are recommended reading for anyone who wants to
delve a little more into the topic.

Name Author Topic
The Psychology of
Computer
Programming

Gerald Weinberg A fascinating look at the psychological
aspects of computer programming.
This is the source of the information on
egoless programming.

Deep Smarts Dorothy Leonard
and Walter Swap

This book covers the development of
Deep Smarts, which is what
characterises novices from experts

Bowling Alone Robert Putman Not directly related to the topics under
consideration, but a full and interesting
discussion of the importance of social
capital.

The Lucifer Effect Phillip Zimbardo A fascinating look into the power of
social processes in closed systems.

If you have any other suggestions for recommended reading, let me know so
they can be included where appropriate!

Conclusion
That's it for now, we're done here. Could you switch off the lights on your way
out? Thank you, I appreciate your kindness in these trying times.
As a final note, you could really sum up the entirety of this material into the
aphorism proposed by our friends at Penny Arcade in their range of
reverential garments (available here if you think you could get away with
wearing it in your daily life).

Michael Heron Page 108

http://www.pennyarcademerch.com/pat070181.html
http://www.penny-arcade.com/
http://www.amazon.co.uk/s/ref=nb_ss_w_h_?url=search-alias%3Daps&field-keywords=lucifer+effect&x=0&y=0
http://www.amazon.co.uk/Bowling-Alone-Collapse-American-Community/dp/0743203046/ref=sr_1_1?ie=UTF8&s=books&qid=1225983822&sr=1-1
http://www.amazon.co.uk/Deep-Smarts-Cultivate-Transfer-Enduring/dp/1591395283/ref=sr_1_1?ie=UTF8&s=books&qid=1225983794&sr=1-1
http://www.amazon.co.uk/Psychology-Computer-Programming-Silver-Anniversary/dp/0932633420/ref=sr_1_1?ie=UTF8&s=books&qid=1225983751&sr=8-1
http://www.amazon.co.uk/Psychology-Computer-Programming-Silver-Anniversary/dp/0932633420/ref=sr_1_1?ie=UTF8&s=books&qid=1225983751&sr=8-1
http://www.amazon.co.uk/Psychology-Computer-Programming-Silver-Anniversary/dp/0932633420/ref=sr_1_1?ie=UTF8&s=books&qid=1225983751&sr=8-1

	Mojo The Monkey Says...
	Playing Nicely With Others
	Introduction
	Whole New Skills
	Standard Standards
	Professionalism
	Conclusion

	Code Layout
	Introduction
	Code Formatting
	No tabs
	Make It Easy On Yourself

	Conclusion

	Collaboration
	Introduction
	The Social Context of Collaboration
	Development in Volunteer Environments
	What Are The Benefits of Collaboration?
	Collaboration Tools on Discworld
	A Suggested Collaboration Process
	Conclusion

	Social Capital
	Introduction
	Creator Politics
	The Ten Commandments Of Egoless Programming
	Understand and Accept You Will Make Mistakes
	You Are Not Your Code
	No Matter How Much "Karate" You Know, Someone Else Will Always Know More.
	Don't Rewrite Code Without Consultation
	Treat People Who Know Less Than You With Respect, Deference, And Patience
	The Only Constant In The World Is Change
	The Only True Authority Stems From Knowledge, Not From Position
	Fight For What You Believe In, But Accept Defeat Gracefully
	Don't Be The "Guy In The Room"
	Critique Code Instead Of People – Be Kind To The Coder, Not To The Code

	Trust and Common Ground
	The Trust Triad
	Conclusion

	The Dark Art of Refactoring
	Introduction
	Refactoring
	Good Code
	Impact of Change
	The Rules
	Breaking The Rules
	Refactoring
	Some Common Refactoring Tasks
	Conclusion

	Coding Etiquitte
	Introduction
	Before You Write Any Code
	Check for Duplication of Effort
	Make Sure All Involved Parties Are Consulted
	Ensure A Migration Strategy
	When You Are Writing Code
	Be Wary Of The Impact of Change
	Write Your Code Cleanly
	Document Extensively
	Attribute Contributions

	When You Have Written Code
	Abdicate Ownership
	Be Willing To Maintain
	Make Sure All Parties Have Adequate Information

	Conclusion

	Source Control
	Introduction
	Source Control In The Abstract
	The Discworld RCS System
	Problems
	Conclusion

	Documentation
	Introduction
	Commenting
	Commenting Good Practice
	Autodoc
	The Autodoc Process
	Other Help-Files
	Why Document?
	Conclusion

	Domain Integration
	Introduction
	Multiple Developers – the Traditional Approach
	Examples of this on Discworld
	Continuous Integration
	A Framework for Area Integration
	Conclusion

	Group Dynamics
	Introduction
	What is a Domain?
	When Is A Group Not A Group?
	Group Roles
	Group-think
	Conclusion

	Project Management
	Introduction
	Project Management 101
	Frameworks
	Communication and Team Roles
	Domain Administration
	Project Leader
	Documenter
	Developers

	Subdivision of Effort and Ownership
	The Discworld Project Tracker
	Conclusion

	Maintenance
	Introduction
	Maintenance In The Software Development Process
	Domain Maintenance
	Where Do Bugs Come From?
	Bug Triage
	The Error Handler
	Conclusion

	The Experience Divide
	Introduction
	Professional and Amateur Programmers
	Deep Smarts
	The Tension
	Strategies for Success
	Conclusion

	Wrapping Up
	Introduction
	Collegiality
	Further Reading
	Conclusion

